Integrating White and Black Box Techniques for Interpretable Machine Learning

被引:0
|
作者
Vernon, Eric M. [1 ]
Masuyama, Naoki [1 ]
Nojima, Yusuke [1 ]
机构
[1] Osaka Metropolitan Univ, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
Machine learning; Classification; Explainable artificial intelligence; Accuracy-interpretability trade-off;
D O I
10.1007/978-981-97-3562-4_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In machine learning algorithm design, there exists a trade-off between the interpretability and performance of the algorithm. In general, algorithms which are simpler and easier for humans to comprehend tend to show worse performance than more complex, less transparent algorithms. For example, a random forest classifier is likely to be more accurate than a simple decision tree, but at the expense of interpretability. In this paper, we present an ensemble classifier design which classifies easier inputs using a highly interpretable classifier (i.e., white box model) and more difficult inputs using a more powerful, but less interpretable classifier (i.e., black box model).
引用
收藏
页码:639 / 649
页数:11
相关论文
共 50 条
  • [1] Opening the Black Box: Interpretable Machine Learning for Geneticists
    Azodi, Christina B.
    Tang, Jiliang
    Shiu, Shin-Han
    TRENDS IN GENETICS, 2020, 36 (06) : 442 - 455
  • [2] Illuminating the black box: An interpretable machine learning based on ensemble trees
    Lee, Yue-Shi
    Yen, Show-Jane
    Jiang, Wendong
    Chen, Jiyuan
    Chang, Chih-Yung
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 272
  • [3] Techniques for Interpretable Machine Learning
    Du, Mengnan
    Li, Ninghao
    Hu, Xia
    COMMUNICATIONS OF THE ACM, 2020, 63 (01) : 68 - 77
  • [4] Opening the black box: interpretable machine learning for predictor finding of metabolic syndrome
    Yan Zhang
    Xiaoxu Zhang
    Jaina Razbek
    Deyang Li
    Wenjun Xia
    Liangliang Bao
    Hongkai Mao
    Mayisha Daken
    Mingqin Cao
    BMC Endocrine Disorders, 22
  • [5] Opening the black box: interpretable machine learning for predictor finding of metabolic syndrome
    Zhang, Yan
    Zhang, Xiaoxu
    Razbek, Jaina
    Li, Deyang
    Xia, Wenjun
    Bao, Liangliang
    Mao, Hongkai
    Daken, Mayisha
    Cao, Mingqin
    BMC ENDOCRINE DISORDERS, 2022, 22 (01)
  • [6] A translucent box: interpretable machine learning in ecology
    Lucas, Tim C. D.
    ECOLOGICAL MONOGRAPHS, 2020, 90 (04)
  • [7] Opening the Black Box: Bootstrapping Sensitivity Measures in Neural Networks for Interpretable Machine Learning
    La Rocca, Michele
    Perna, Cira
    STATS, 2022, 5 (02): : 440 - 457
  • [8] Lost in a black-box? Interpretable machine learning for assessing Italian SMEs default
    Crosato, Lisa
    Liberati, Caterina
    Repetto, Marco
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2023, 39 (06) : 829 - 846
  • [9] Modeling crude oil pyrolysis process using advanced white-box and black-box machine learning techniques
    Fahimeh Hadavimoghaddam
    Alexei Rozhenko
    Mohammad-Reza Mohammadi
    Masoud Mostajeran Gortani
    Peyman Pourafshary
    Abdolhossein Hemmati-Sarapardeh
    Scientific Reports, 13
  • [10] Modeling crude oil pyrolysis process using advanced white-box and black-box machine learning techniques
    Hadavimoghaddam, Fahimeh
    Rozhenko, Alexei
    Mohammadi, Mohammad-Reza
    Mostajeran Gortani, Masoud
    Pourafshary, Peyman
    Hemmati-Sarapardeh, Abdolhossein
    SCIENTIFIC REPORTS, 2023, 13 (01)