Integrating White and Black Box Techniques for Interpretable Machine Learning

被引:0
|
作者
Vernon, Eric M. [1 ]
Masuyama, Naoki [1 ]
Nojima, Yusuke [1 ]
机构
[1] Osaka Metropolitan Univ, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
Machine learning; Classification; Explainable artificial intelligence; Accuracy-interpretability trade-off;
D O I
10.1007/978-981-97-3562-4_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In machine learning algorithm design, there exists a trade-off between the interpretability and performance of the algorithm. In general, algorithms which are simpler and easier for humans to comprehend tend to show worse performance than more complex, less transparent algorithms. For example, a random forest classifier is likely to be more accurate than a simple decision tree, but at the expense of interpretability. In this paper, we present an ensemble classifier design which classifies easier inputs using a highly interpretable classifier (i.e., white box model) and more difficult inputs using a more powerful, but less interpretable classifier (i.e., black box model).
引用
收藏
页码:639 / 649
页数:11
相关论文
共 50 条
  • [21] Evaluation of white-box versus black-box machine learning models in estimating ambient black carbon concentration
    Fung, Pak L.
    Zaidan, Martha A.
    Timonen, Hilkka
    Niemi, Jarkko, V
    Kousa, Anu
    Kuula, Joel
    Luoma, Krista
    Tarkoma, Sasu
    Petaja, Tuukka
    Kulmala, Markku
    Hussein, Tareq
    JOURNAL OF AEROSOL SCIENCE, 2021, 152
  • [22] Shedding Light on the Black Box: Integrating Prediction Models and Explainability Using Explainable Machine Learning
    Zhang, Yucheng
    Zheng, Yuyan
    Wang, Dan
    Gu, Xiaowei
    Zyphur, Michael J.
    Xiao, Lin
    Liao, Shudi
    Deng, Yangyang
    ORGANIZATIONAL RESEARCH METHODS, 2025,
  • [23] Polishing the black box: flexible model-based partitioning surrogate models for interpretable machine learning model
    Khasawneh, Tariq
    Azzeh, Mohammad
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [25] Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
    Cynthia Rudin
    Nature Machine Intelligence, 2019, 1 : 206 - 215
  • [26] Decision-making framework with double-loop learning through interpretable black-box machine learning models
    Bohanec, Marko
    Robnik-Sikonja, Marko
    Borstnar, Mirjana Kljajic
    INDUSTRIAL MANAGEMENT & DATA SYSTEMS, 2017, 117 (07) : 1389 - 1406
  • [27] Shining Light Into the Black Box of Machine Learning
    Hsu, William
    Elmore, Joann G.
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2019, 111 (09): : 877 - 879
  • [28] Interpretable Machine Learning Techniques for Predictive Cattle Behavior Monitoring
    Ibrahim, Tumwesige
    Isaac, Kawooya Barry
    Francis, Bwogi
    Lule, Emmanuel
    Hellen, Nakayiza
    Chongomweru, Halimu
    Marvin, Ggaliwango
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1219 - 1224
  • [29] Comparing machine-learning-based black box techniques and white box models to predict rainfall-runoff in a northern area of Iraq, the Little Khabur River
    Sayed, Biju Theruvil
    Al-Mohair, Hani Kaid
    Alkhayyat, Ahmed
    Ramirez-Coronel, Andres Alexis
    Elsahabi, Mohamed
    WATER SCIENCE AND TECHNOLOGY, 2023, 87 (03) : 812 - 822
  • [30] Interpretable Machine Learning Techniques for Predictive Cattle Behavior Monitoring
    Makerere University, Department of Computer Science, Kampala, Uganda
    不详
    不详
    Int. Conf. Sustain. Comput. Smart Syst., ICSCSS - Proc., (1219-1224):