Integrating White and Black Box Techniques for Interpretable Machine Learning

被引:0
|
作者
Vernon, Eric M. [1 ]
Masuyama, Naoki [1 ]
Nojima, Yusuke [1 ]
机构
[1] Osaka Metropolitan Univ, Sakai, Osaka 5998531, Japan
基金
日本学术振兴会;
关键词
Machine learning; Classification; Explainable artificial intelligence; Accuracy-interpretability trade-off;
D O I
10.1007/978-981-97-3562-4_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In machine learning algorithm design, there exists a trade-off between the interpretability and performance of the algorithm. In general, algorithms which are simpler and easier for humans to comprehend tend to show worse performance than more complex, less transparent algorithms. For example, a random forest classifier is likely to be more accurate than a simple decision tree, but at the expense of interpretability. In this paper, we present an ensemble classifier design which classifies easier inputs using a highly interpretable classifier (i.e., white box model) and more difficult inputs using a more powerful, but less interpretable classifier (i.e., black box model).
引用
收藏
页码:639 / 649
页数:11
相关论文
共 50 条
  • [41] Machine Learning Techniques for SIM Box Fraud Detection
    Kashir, Mhair
    Bashir, Sajid
    2019 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (COMTECH), 2019, : 4 - 8
  • [42] Constructing transferable and interpretable machine learning models for black carbon concentrations
    Fung, Pak Lun
    Savadkoohi, Marjan
    Zaidan, Martha Arbayani
    V. Niemi, Jarkko
    Timonen, Hilkka
    Pandolfi, Marco
    Alastuey, Andres
    Querol, Xavier
    Hussein, Tareq
    Petaja, Tuukka
    ENVIRONMENT INTERNATIONAL, 2024, 184
  • [43] Interpretable Machine Learning for Finding Intermediate-mass Black Holes
    Pasquato, Mario
    Trevisan, Piero
    Askar, Abbas
    Lemos, Pablo
    Carenini, Gaia
    Mapelli, Michela
    Hezaveh, Yashar
    ASTROPHYSICAL JOURNAL, 2024, 965 (01):
  • [44] Global and local interpretability techniques of supervised machine learning black box models for numerical medical data
    Hakkoum, Hajar
    Idri, Ali
    Abnane, Ibtissam
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 131
  • [45] Interpretable Companions for Black-Box Models
    Pan, Danqing
    Wang, Tong
    Hara, Satoshi
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2444 - 2453
  • [46] Application of interpretable machine learning techniques to automatic seizure detection and classification
    Statsenko, Yauhen
    Babushkin, Vladimir
    Talako, Tatsiana
    Habuza, Tetiana
    King, Fransina
    Smetanina, Darya
    Meribout, Sarah
    Ismail, Fatima
    Gorkom, Klaus
    Gelovani, Juri
    Ljubisavljevic, Milos
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2023, 455
  • [47] Integrating machine learning techniques into optimal maintenance scheduling
    Yeardley, Aaron S.
    Ejeh, Jude O.
    Allen, Louis
    Brown, Solomon F.
    Cordiner, Joan
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 166
  • [48] Predicting multiple fatigue properties of twinning-induced plasticity steels by black-box and white-box machine learning
    Wu, Ronghai
    Zhang, Yuxin
    Peng, Zichao
    Song, Di
    Li, Heng
    MECHANICS OF MATERIALS, 2025, 205
  • [49] Travel mode choice prediction: developing new techniques to prioritize variables and interpret black-box machine learning techniques
    Naseri, Hamed
    Waygood, E. O. D.
    Patterson, Zachary
    Alousi-Jones, Meredith
    Wang, Bobin
    TRANSPORTATION PLANNING AND TECHNOLOGY, 2024,
  • [50] Opening the Black Box of the Radiation Belt Machine Learning Model
    Ma, Donglai
    Bortnik, Jacob
    Chu, Xiangning
    Claudepierre, Seth G. G.
    Ma, Qianli
    Kellerman, Adam
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (04):