DISTRIBUTED MULTI-VIEW SUBSPACE CLUSTERING VIA AUTO-WEIGHTED SPECTRAL EMBEDDING

被引:0
|
作者
Chang, Pei-Che [1 ]
Cheng, Cheng-Yuan [1 ]
Hong, Y-W Peter [1 ,2 ]
机构
[1] Natl Tsing Hua Univ, Inst Commun Engn, Hsinchu, Taiwan
[2] MOST Joint Res Ctr AI Technol & AII Vista Healthc, Hsinchu, Taiwan
关键词
Multi-view clustering; subspace clustering; distributed learning; spectral embedding; ADMM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work examines a distributed multi-view clustering problem, where the data associated with different views is stored across multiple edge devices. A sparse subspace clustering method is adopted using auto-weighted spectral embedding to ensure that the clustering solution is consistent among local edge devices. A master-slave architecture is adopted where clustering is first performed separately at the edge devices based on their local single-view datasets but are coordinated by a spectral regularizer computed at the central node. The optimization is performed using an alternating optimization approach, where the local self-representation and the global cluster indicator matrices are optimized in turn until convergence. The weighting of the regularizer is updated in each iteration of the process and adapts automatically to the fit of the spectral embedding at different locations. The proof of convergence is provided, followed by experimental results on two public datasets, namely, Extended Yale-B and IXMAS, which demonstrate the effectiveness of the proposed method.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Self-paced and auto-weighted multi-view clustering
    Ren, Yazhou
    Huang, Shudong
    Zhao, Peng
    Han, Minghao
    Xu, Zenglin
    NEUROCOMPUTING, 2020, 383 : 248 - 256
  • [22] Auto-weighted multi-view co-clustering via fast matrix factorization
    Nie, Feiping
    Shi, Shaojun
    Li, Xuelong
    PATTERN RECOGNITION, 2020, 102
  • [23] Auto-weighted multi-view co-clustering with bipartite graphs
    Huang, Shudong
    Xu, Zenglin
    Tsang, Ivor W.
    Kang, Zhao
    INFORMATION SCIENCES, 2020, 512 (512) : 18 - 30
  • [24] Consensus graph learning for auto-weighted multi-view projection clustering
    Sang, Xiaoshuang
    Lu, Jianfeng
    Lu, Hong
    INFORMATION SCIENCES, 2022, 609 : 816 - 837
  • [25] Auto-weighted orthogonal and nonnegative graph reconstruction for multi-view clustering
    Zhao, Mingyu
    Yang, Weidong
    Nie, Feiping
    INFORMATION SCIENCES, 2023, 632 : 324 - 339
  • [26] Auto-Weighted Multi-View Clustering for Large-Scale Data
    Wan, Xinhang
    Liu, Xinwang
    Liu, Jiyuan
    Wang, Siwei
    Wen, Yi
    Liang, Weixuan
    Zhu, En
    Liu, Zhe
    Zhou, Lu
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 10078 - +
  • [27] Auto-weighted Multi-view learning for Semi-Supervised graph clustering
    Liu, Songhua
    Ding, Caiying
    Jiang, Fei
    Wang, Yan
    Yin, Baoyong
    NEUROCOMPUTING, 2019, 362 : 19 - 32
  • [28] Dual auto-weighted multi-view clustering via autoencoder-like nonnegative matrix factorization
    Xiang, Si-Jia
    Li, Heng-Chao
    Yang, Jing-Hua
    Feng, Xin-Ru
    INFORMATION SCIENCES, 2024, 667
  • [29] Multi-view clustering via spectral embedding fusion
    Yin, Hongwei
    Li, Fanzhang
    Zhang, Li
    Zhang, Zhao
    SOFT COMPUTING, 2019, 23 (01) : 343 - 356
  • [30] Multi-view clustering via spectral embedding fusion
    Hongwei Yin
    Fanzhang Li
    Li Zhang
    Zhao Zhang
    Soft Computing, 2019, 23 : 343 - 356