Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural

被引:12
|
作者
Zuo, Xiaobin [1 ,2 ]
Venkitasubramanian, Padmesh [3 ]
Martin, Kevin J. [3 ]
Subramaniam, Bala [1 ,2 ,4 ]
机构
[1] Univ Kansas, Ctr Environmentally Beneficial Catalysis, Lawrence, KS 66047 USA
[2] Ottawa Univ, Sch Arts & Sci, Ottawa, KS 66067 USA
[3] Archer Daniels Midland ADM Co, Decatur, IL 62521 USA
[4] Univ Kansas, Dept Chem & Petr Engn, Lawrence, KS 66045 USA
基金
美国农业部;
关键词
2; 5-furandicarboxylic acid; 5-hydroxymethylfurfural; catalysis; oxidation; sustainable chemistry; P-XYLENE OXIDATION; CATALYTIC-OXIDATION; BIOMASS; CONVERSION; OPTIMIZATION; PURIFICATION; AUTOXIDATION; DEHYDRATION; CHEMISTRY; ZIRCONIUM;
D O I
10.1002/cssc.202102050
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The oxidation of 5-hydroxymethylfurfural (HMF) produces value-added chemicals such as 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). In this work, FDCA production was achieved by oxidation of crude HMF solution containing around 45 % HMF and unwanted byproducts such as 5,5 '-[oxy-bis(methylene)]bis-2-furfural (HMF dimer) and polymers. At optimized reaction conditions similar to the Mid-Century process, homogeneous oxidation of the crude HMF (up to 20 wt% in the feed) by Co/Mn/Br catalyst in acetic acid solution produced FDCA at >95 % yield. The solid FDCA product contained <4000 ppm 5-formyl-2-furancarboxylic acid (FFCA). Such high yields were observed because the impurities in crude HMF were also converted to FDCA, as confirmed by the facile oxidation of HMF dimer to FDCA under reaction conditions. The successful demonstration of crude HMF as feed, obviating the need for HMF purification, suggests potential for cost-effectively producing FDCA in existing terephthalic plants.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on supported Au and Pd bimetallic nanoparticles
    Chadderdon, David J.
    Xin, Le
    Qi, Ji
    Qiu, Yang
    Krishna, Phani
    More, Karren L.
    Li, Wenzhen
    GREEN CHEMISTRY, 2014, 16 (08) : 3778 - 3786
  • [32] Reaction Mechanism and Kinetics of the Liquid-Phase Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Chen, Shuaibo
    Guo, Xusheng
    Ban, Heng
    Pan, Teng
    Zheng, Liping
    Cheng, Youwei
    Wang, Lijun
    Li, Xi
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (47) : 16887 - 16898
  • [33] Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO2
    Hayashi, Eri
    Komanoya, Tasuku
    Kamata, Keigo
    Hara, Michikazu
    CHEMSUSCHEM, 2017, 10 (04) : 654 - 658
  • [34] Effect of MnO2 Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Hayashi, Eri
    Yamaguchi, Yui
    Kamata, Keigo
    Tsunoda, Naoki
    Kumagai, Yu
    Oba, Fumiyasu
    Hara, Michikazu
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (02) : 890 - 900
  • [35] Kilogram-scale production of high purity 2,5-furandicarboxylic acid via sustainable leap in continuous electrochemical oxidation of 5-hydroxymethylfurfural
    Chakthranont, Pongkarn
    Woraphutthaporn, Sarinya
    Sanpitakseree, Chotitath
    Srisawad, Kasempong
    Faungnawakij, Kajornsak
    CHEMICAL ENGINEERING JOURNAL, 2023, 476
  • [36] Synergistic chemo/biocatalytic synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural
    Yang, Zi-Yue
    Wen, Mao
    Zong, Min-Hua
    Li, Ning
    CATALYSIS COMMUNICATIONS, 2020, 139
  • [37] Concurrent Biocatalytic Oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid by Merging Galactose Oxidase with Whole Cells
    Zhu, Fan-Feng
    Wang, Jian-Peng
    Zong, Min-Hua
    Zheng, Zhao-Juan
    Li, Ning
    PROCESSES, 2023, 11 (08)
  • [38] Complete oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a novel enzyme-nanozyme hybrid catalyst
    He, Aiyong
    Dong, Liangliang
    Xu, Ning
    El-Hout, Soliman I.
    Xia, Jun
    Qiu, Zhongyang
    He, Jianlong
    Deng, Yuanfang
    Liu, Xiaoyan
    Hu, Lei
    Xu, Jiaxing
    CHEMICAL ENGINEERING JOURNAL, 2022, 449
  • [39] Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under neat conditions
    Kai-Jian Liu
    Tang-Yu Zeng
    Jia-Le Zeng
    Shao-Feng Gong
    Jun-Yi He
    Ying-Wu Lin
    Jia-Xi Tan
    Zhong Cao
    Wei-Min He
    Chinese Chemical Letters, 2019, 30 (12) : 2304 - 2308
  • [40] Preparation of NiO-N/C composites for electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Wang, Wei
    Zhang, Zhe
    Wang, Min
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (18) : 17247 - 17254