Parameter Estimation of Sandwich Systems with Backlash via Modified Kalman Filter

被引:0
|
作者
Li, Yanyan [1 ]
Tan, Yonghong [2 ]
Dong, Ruili [2 ]
Li, Haifen [1 ]
机构
[1] Nankai Univ, Tianjin Key Lab Intelligent Robot, Inst Robot & Automat Informat Syst, Tianjin 300071, Peoples R China
[2] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 201418, Peoples R China
关键词
ADAPTIVE-CONTROL; LINEAR-SYSTEMS; WIENER SYSTEMS; IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate models for sandwich systems with backlash are very important for engineers to develop a technique to compensate the effect of backlash on the system and derive satisfactory performance. In this paper, an online modified Kalman filtering (MKF) algorithm for the parameter identification of stochastic sandwich systems with backlash is proposed. With the switch functions introduced to represent the effect of backlash, the pseudo-linear model with separated parameters is obtained to describe the sandwich system with backlash. Then, a stochastic state space model is constructed on account of the modeling residual is the Gaussian white noise sequence. Afterwards, the MKF algorithm is applied to estimate parameters of this model. Finally a simulation example is presented to evaluate the proposed scheme.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 50 条
  • [41] Parameter Estimation of Biological Phenomena: An Unscented Kalman Filter Approach
    Meskin, N.
    Nounou, H.
    Nounou, M.
    Datta, A.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (02) : 537 - 543
  • [42] An Energy Balance Model Parameter Estimation with an Extended Kalman Filter
    Manurung, Auralius
    Kristiana, Lisa
    Aryanta, Dwi
    IFAC PAPERSONLINE, 2021, 54 (20): : 735 - 740
  • [43] AN IMPROVED DUAL UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER ESTIMATION
    Yu, Anxi
    Liu, Ye
    Zhu, Jubo
    Dong, Zhen
    ASIAN JOURNAL OF CONTROL, 2016, 18 (04) : 1427 - 1440
  • [44] Dynamic mode decomposition using a Kalman filter for parameter estimation
    Nonomura, Taku
    Shibata, Hisaichi
    Takaki, Ryoji
    AIP ADVANCES, 2018, 8 (10)
  • [45] Constrained Dual Ensemble Kalman Filter for State and Parameter Estimation
    Bavdekar, Vinay A.
    Prakash, J.
    Shah, Sirish L.
    Gopaluni, R. Bhushan
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3093 - 3098
  • [46] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Azzalini, Loic J.
    Crompton, David
    D'Eleuterio, Gabriele M. T.
    Skinner, Frances
    Lankarany, Milad
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 (02) : 223 - 237
  • [47] Dual extended Kalman filter for vehicle state and parameter estimation
    Wenzel, TA
    Burnham, KJ
    Blundell, MV
    Williams, RA
    VEHICLE SYSTEM DYNAMICS, 2006, 44 (02) : 153 - 171
  • [48] Groundwater parameter estimation using the ensemble Kalman filter with localization
    Nan, Tongchao
    Wu, Jichun
    HYDROGEOLOGY JOURNAL, 2011, 19 (03) : 547 - 561
  • [49] Least Squares Estimation and Kalman Filter Based Dynamic State and Parameter Estimation
    Fan, Lingling
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [50] Frequency tracking via Extended Kalman Filter: Parameter design
    Bittanti, S
    Savaresi, SM
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2225 - 2229