Parameter Estimation of Sandwich Systems with Backlash via Modified Kalman Filter

被引:0
|
作者
Li, Yanyan [1 ]
Tan, Yonghong [2 ]
Dong, Ruili [2 ]
Li, Haifen [1 ]
机构
[1] Nankai Univ, Tianjin Key Lab Intelligent Robot, Inst Robot & Automat Informat Syst, Tianjin 300071, Peoples R China
[2] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 201418, Peoples R China
关键词
ADAPTIVE-CONTROL; LINEAR-SYSTEMS; WIENER SYSTEMS; IDENTIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate models for sandwich systems with backlash are very important for engineers to develop a technique to compensate the effect of backlash on the system and derive satisfactory performance. In this paper, an online modified Kalman filtering (MKF) algorithm for the parameter identification of stochastic sandwich systems with backlash is proposed. With the switch functions introduced to represent the effect of backlash, the pseudo-linear model with separated parameters is obtained to describe the sandwich system with backlash. Then, a stochastic state space model is constructed on account of the modeling residual is the Gaussian white noise sequence. Afterwards, the MKF algorithm is applied to estimate parameters of this model. Finally a simulation example is presented to evaluate the proposed scheme.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 50 条
  • [31] An Inequality Constrained Ensemble Kalman Filter for Parameter Estimation Application
    Goh, Shu Ting
    Soon, Jing Jun
    Low, Kay-Soon
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [32] Aerodynamic parameter estimation using adaptive unscented Kalman filter
    Majeed, M.
    Kar, Indra Narayan
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2013, 85 (04): : 267 - 279
  • [33] Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter
    Annan, JD
    Lunt, DJ
    Hargreaves, JC
    Valdes, PJ
    NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (03) : 363 - 371
  • [34] Constrained Dynamic Parameter Estimation using the Extended Kalman Filter
    Joukov, Vladimir
    Bonnet, Vincent
    Venture, Gentiane
    Kulic, Dana
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3654 - 3659
  • [35] State and parameter estimation using extended Kitanidis Kalman filter
    Varshney, Devyani
    Bhushan, Mani
    Patwardhan, Sachin C.
    JOURNAL OF PROCESS CONTROL, 2019, 76 (98-111) : 98 - 111
  • [36] Exponential convergence of the Kalman filter based parameter estimation algorithm
    Cao, LY
    Schwartz, HM
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2003, 17 (10) : 763 - 783
  • [37] Kalman filter data assimilation: Targeting observations and parameter estimation
    Bellsky, Thomas
    Kostelich, Eric J.
    Mahalov, Alex
    CHAOS, 2014, 24 (02)
  • [38] Parameter Estimation of Biological Phenomena Modeled by S-systems: An Extended Kalman Filter Approach
    Meskin, N.
    Nounou, H.
    Nounou, M.
    Datta, A.
    Dougherty, E. R.
    2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 4424 - 4429
  • [39] An advanced evolutionary algorithm for parameter estimation of the discrete Kalman filter
    Chan, ZSH
    Ngan, HW
    Fung, YF
    Rad, AB
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 142 (1-3) : 248 - 254
  • [40] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    Journal of Computational Neuroscience, 2023, 51 : 223 - 237