WEIGHTED ORTHOGONAL DISTANCE REGRESSION FOR TIRE MODELS PARAMETERS IDENTIFICATION

被引:0
|
作者
Olazagoitia, JoseLuis [1 ]
Lopez, Alberto [1 ]
机构
[1] Nebrija Univ, C Pirineos 55, Madrid 28050, Spain
关键词
Magic Formula; Tire Model Identification; Longitudinal Tire Force; Orthogonal Residues; Least Squares; TYRE; ALGORITHM;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Determining the parameters in existing tire models (e.g. Magic Formula (MF)) for calculating longitudinal and lateral forces depending on the tire slip is often based on standard least squares techniques. This type of optimization minimizes the vertical differences in the ordinate axis between the test data and the chosen tire model. Although the practice is to use this type of optimization in adjusting those model parameters, it should be noted that this approach disregards the errors that have been committed in the measurement of tire slips. These inaccuracies in the measured data affect the optimum parameters of the model, producing non optimum models. This paper presents a methodology to improve the fitting of mathematical tire models on available test data, taking into account the vertical errors together with errors in the independent variable.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] ODRPACK - SOFTWARE FOR WEIGHTED ORTHOGONAL DISTANCE REGRESSION
    BOGGS, PT
    DONALDSON, JR
    BYRD, RH
    SCHNABEL, RB
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (04): : 348 - 364
  • [2] Incomplete orthogonal distance regression
    Atieg, A
    Watson, G
    BIT NUMERICAL MATHEMATICS, 2004, 44 (04) : 619 - 629
  • [3] Incomplete Orthogonal Distance Regression
    A. Atieg
    G. A. Watson
    BIT Numerical Mathematics, 2004, 44 : 619 - 629
  • [4] Structure identification and variable selection in geographically weighted regression models
    Wang, Wentao
    Li, Dengkui
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (10) : 2050 - 2068
  • [5] A COMPUTATIONAL EXAMINATION OF ORTHOGONAL DISTANCE REGRESSION
    BOGGS, PT
    SPIEGELMAN, CH
    DONALDSON, JR
    SCHNABEL, RB
    JOURNAL OF ECONOMETRICS, 1988, 38 (1-2) : 169 - 201
  • [6] LEAST ORTHOGONAL DISTANCE ESTIMATOR OF STRUCTURAL PARAMETERS IN SIMULTANEOUS EQUATION MODELS
    Pieraccini, L.
    Naccarato, A.
    STATISTICA, 2008, 68 (3-4) : 349 - 364
  • [7] Applications of orthogonal distance regression in metrology
    Zwick, DS
    RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 265 - 272
  • [8] Algorithm 869: ODRPACK95: A weighted orthogonal distance regression code with bound constraints
    Zwolak, Jason W.
    Boggs, Paul T.
    Watson, Layne T.
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2007, 33 (04):
  • [9] A new approach to parameters identification of fuzzy regression models
    Liu, Fengqiu
    Wang, Jianmin
    Peng, Yu
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 1, PROCEEDINGS, 2008, : 127 - +
  • [10] ε-Distance Weighted Support Vector Regression
    Ou, Ge
    Wang, Yan
    Huang, Lan
    Pang, Wei
    Coghill, George Macleod
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I, 2018, 10937 : 209 - 220