Incomplete Orthogonal Distance Regression

被引:0
|
作者
A. Atieg
G. A. Watson
机构
[1] University of Dundee,Department of Mathematics
来源
BIT Numerical Mathematics | 2004年 / 44卷
关键词
least squares; orthogonal distances; Gauss–Newton method;
D O I
暂无
中图分类号
学科分类号
摘要
A common method of fitting curves and surfaces to data is to minimize the sum of squares of the orthogonal distances from the data points to the curve or surface, a process known as orthogonal distance regression. Here we consider fitting geometrical objects to data when some orthogonal distances are not available. Methods based on the Gauss–Newton method are developed, analyzed and illustrated by examples.
引用
收藏
页码:619 / 629
页数:10
相关论文
共 50 条
  • [1] Incomplete orthogonal distance regression
    Atieg, A
    Watson, G
    [J]. BIT NUMERICAL MATHEMATICS, 2004, 44 (04) : 619 - 629
  • [2] A COMPUTATIONAL EXAMINATION OF ORTHOGONAL DISTANCE REGRESSION
    BOGGS, PT
    SPIEGELMAN, CH
    DONALDSON, JR
    SCHNABEL, RB
    [J]. JOURNAL OF ECONOMETRICS, 1988, 38 (1-2) : 169 - 201
  • [3] Applications of orthogonal distance regression in metrology
    Zwick, DS
    [J]. RECENT ADVANCES IN TOTAL LEAST SQUARES TECHNIQUES AND ERRORS-IN-VARIABLES MODELING, 1997, : 265 - 272
  • [4] ODRPACK - SOFTWARE FOR WEIGHTED ORTHOGONAL DISTANCE REGRESSION
    BOGGS, PT
    DONALDSON, JR
    BYRD, RH
    SCHNABEL, RB
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (04): : 348 - 364
  • [5] A STABLE AND EFFICIENT ALGORITHM FOR NONLINEAR ORTHOGONAL DISTANCE REGRESSION
    BOGGS, PT
    BYRD, RH
    SCHNABEL, RB
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06): : 1052 - 1078
  • [6] WEIGHTED ORTHOGONAL DISTANCE REGRESSION FOR TIRE MODELS PARAMETERS IDENTIFICATION
    Olazagoitia, JoseLuis
    Lopez, Alberto
    [J]. INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2015, VOL 3, 2016,
  • [7] Implicit polynomials, orthogonal distance regression, and the closest point on a curve
    Redding, NJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (02) : 191 - 199
  • [8] Fitting two concentric spheres to data by orthogonal distance regression
    Al-Subaihi, I. A.
    [J]. MATHEMATICAL COMMUNICATIONS, 2008, 13 (02) : 233 - 239
  • [9] INCOMPLETE BLOCK DESIGNS THROUGH ORTHOGONAL AND INCOMPLETE ORTHOGONAL ARRAYS
    MUKHOPADHYAY, AC
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1978, 2 (02) : 189 - 195
  • [10] An efficient separation-of-variables approach to parametric orthogonal distance regression
    Turner, DA
    Anderson, IJ
    Mason, JC
    Cox, MG
    Forbes, AB
    [J]. ADVANCED MATHEMATICAL & COMPUTATIONAL TOOLS IN METROLOGY IV, 2000, 53 : 246 - 255