WEIGHTED ORTHOGONAL DISTANCE REGRESSION FOR TIRE MODELS PARAMETERS IDENTIFICATION

被引:0
|
作者
Olazagoitia, JoseLuis [1 ]
Lopez, Alberto [1 ]
机构
[1] Nebrija Univ, C Pirineos 55, Madrid 28050, Spain
关键词
Magic Formula; Tire Model Identification; Longitudinal Tire Force; Orthogonal Residues; Least Squares; TYRE; ALGORITHM;
D O I
暂无
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Determining the parameters in existing tire models (e.g. Magic Formula (MF)) for calculating longitudinal and lateral forces depending on the tire slip is often based on standard least squares techniques. This type of optimization minimizes the vertical differences in the ordinate axis between the test data and the chosen tire model. Although the practice is to use this type of optimization in adjusting those model parameters, it should be noted that this approach disregards the errors that have been committed in the measurement of tire slips. These inaccuracies in the measured data affect the optimum parameters of the model, producing non optimum models. This paper presents a methodology to improve the fitting of mathematical tire models on available test data, taking into account the vertical errors together with errors in the independent variable.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] An efficient separation-of-variables approach to parametric orthogonal distance regression
    Turner, DA
    Anderson, IJ
    Mason, JC
    Cox, MG
    Forbes, AB
    ADVANCED MATHEMATICAL & COMPUTATIONAL TOOLS IN METROLOGY IV, 2000, 53 : 246 - 255
  • [42] An Incremental Isoconversional Method for Kinetic Analysis Based on the Orthogonal Distance Regression
    Dubaj, Tibor
    Cibulkova, Zuzana
    Simon, Peter
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (06) : 392 - 398
  • [43] Locally weighted projection regression for predicting hydraulic parameters
    Agarwal, Mohit
    Goyal, Maish
    Deo, M. C.
    CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 2010, 27 (01) : 71 - 80
  • [44] Evaluation of gear errors based on orthogonal distance regression gear profile
    Lin, Hu
    Shi, Zhao-Yao
    Xue, Zi
    Yang, Guo-Liang
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (11): : 3192 - 3199
  • [45] Identification of Piecewise Linear Parameters of Regression Models of Non-Stationary Deterministic Systems
    Jian Wang
    Tuan Le Vang
    A. A. Pyrkin
    S. A. Kolyubin
    A. A. Bobtsov
    Automation and Remote Control, 2018, 79 : 2159 - 2168
  • [46] Identification of parameters for electronic distance examinations
    Richter, Robin
    Tipold, Andrea
    Schaper, Elisabeth
    FRONTIERS IN VETERINARY SCIENCE, 2024, 11
  • [47] Identification of Piecewise Linear Parameters of Regression Models of Non-Stationary Deterministic Systems
    Wang, Jian
    Tuan Le Vang
    Pyrkin, A. A.
    Kolyubin, S. A.
    Bobtsov, A. A.
    AUTOMATION AND REMOTE CONTROL, 2018, 79 (12) : 2159 - 2168
  • [48] Random regression models to estimate genetic parameters for milk production of Guzerat cows using orthogonal Legendre polynomials
    Campolina Diniz Peixoto, Maria Gabriela
    de Abreu Santos, Daniel Jordan
    Aspilcueta Borquis, Rusbel Raul
    Tomita Bruneli, Frank Angelo
    do Carmo Panetto, Joao Claudio
    Tonhati, Humberto
    PESQUISA AGROPECUARIA BRASILEIRA, 2014, 49 (05) : 372 - 383
  • [49] REGRESSION-MODELS WITH INCIDENTAL PARAMETERS
    MAK, TK
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1995, 57 (02): : 453 - 457
  • [50] ON MINIMAX ESTIMATORS OF REGRESSION MODELS PARAMETERS
    Ivanov, A. V.
    Matsak, I. K.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 99 : 83 - 90