New perturbation bounds of partitioned generalized Hermitian eigenvalue problem

被引:0
|
作者
Xiao, Chuanfu [1 ]
Li, Hanyu [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Hermitian eigenvalue problem; Hermitian positive definite pair; Absolute perturbation bound; MATRICES;
D O I
10.1016/j.amc.2017.10.063
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some new absolute perturbation bounds of partitioned generalized Hermitian positive definite eigenvalue problem are established by two different ways. Numerical results show that our bounds are sharper than the ones in the literature. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:422 / 430
页数:9
相关论文
共 50 条
  • [21] PERTURBATION OF PARTITIONED LINEAR RESPONSE EIGENVALUE PROBLEMS
    Teng, Zhongming
    Lu, Linzhang
    Li, Ren-Cang
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2015, 44 : 624 - 638
  • [22] CALCULATING ERROR-BOUNDS FOR AN EIGENPAIR OF THE GENERALIZED EIGENVALUE PROBLEM
    ALEFELD, G
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (03): : 181 - 184
  • [23] Perturbation of null spaces with application to the eigenvalue problem and generalized inverses
    Avrachenkov, KE
    Haviv, M
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 369 : 1 - 25
  • [24] A new algorithm for the generalized eigenvalue problem
    Huper, K
    Helmke, U
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 35 - 38
  • [25] The bounds of the smallest and largest eigenvalues for rank-one modification of the Hermitian eigenvalue problem
    Cheng, GuangHui
    Luo, XiaoXue
    Li, Liang
    [J]. APPLIED MATHEMATICS LETTERS, 2012, 25 (09) : 1191 - 1196
  • [26] The solvability conditions for the inverse eigenvalue problem of Hermitian-generalized Hamiltonian matrices
    Zhang, ZZ
    Hu, XY
    Zhang, L
    [J]. INVERSE PROBLEMS, 2002, 18 (05) : 1369 - 1376
  • [27] The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach
    Boutry, G
    Elad, M
    Golub, GH
    Milanfar, P
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 27 (02) : 582 - 601
  • [28] A new random perturbation interval of symmetric eigenvalue problem
    Tang, Ling
    Xiao, Chuanfu
    Li, Hanyu
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (01): : 147 - 154
  • [29] Some New Perturbation Bounds for the Generalized Polar Decomposition
    Xiao-shan Chen
    Wen Li
    Weiwei Sun
    [J]. BIT Numerical Mathematics, 2004, 44 : 237 - 244
  • [30] Some new perturbation bounds of generalized polar decomposition
    Hong, Xiaoli
    Meng, Lingsheng
    Zheng, Bing
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 233 : 430 - 438