PERTURBATION OF PARTITIONED LINEAR RESPONSE EIGENVALUE PROBLEMS

被引:0
|
作者
Teng, Zhongming [1 ]
Lu, Linzhang [2 ,3 ]
Li, Ren-Cang [4 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Comp & Informat Sci, Fuzhou 350002, Peoples R China
[2] Guizhou Normal Univ, Sch Math & Comp Sci, Guizhou, Peoples R China
[3] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[4] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
linear response eigenvalue problem; random phase approximation; perturbation; quadratic perturbation bound; MINIMIZATION PRINCIPLES; TRACE MINIMIZATION; PENCILS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with bounds for the linear response eigenvalue problem for H = [GRAPHICS] , where K and M admit a 2 x 2 block partitioning. Bounds on how the changes of its eigenvalues are obtained when K and M are perturbed. They are of linear order with respect to the diagonal block perturbations and of quadratic order with respect to the off-diagonal block perturbations in K and M. The result is helpful in understanding how the Ritz values move towards eigenvalues in some efficient numerical algorithms for the linear response eigenvalue problem. Numerical experiments are presented to support the analysis.
引用
收藏
页码:624 / 638
页数:15
相关论文
共 50 条
  • [1] PERTURBATION OF PARTITIONED HERMITIAN DEFINITE GENERALIZED EIGENVALUE PROBLEMS
    Li, Ren-Cang
    Nakatsukasa, Yuji
    Truhar, Ninoslav
    Xu, Shufang
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (02) : 642 - 663
  • [2] Eigenvalue inclusion sets for linear response eigenvalue problems
    He, Jun
    Liu, Yanmin
    Lv, Wei
    [J]. DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 380 - 386
  • [3] PERTURBATION METHODS FOR SOLVING LINEAR EIGENVALUE PROBLEMS OF ELASTIC RODS
    BURKLIN, H
    SCHMIEG, H
    VIELSACK, P
    [J]. INGENIEUR ARCHIV, 1977, 46 (04): : 271 - 280
  • [4] PERTURBATION OF PARTITIONED HERMITIAN DEFINITE GENERALIZED EIGENVALUE PROBLEMS (vol 32, pg 642, 2011)
    Li, Ren-Cang
    Nakatsukasa, Yuji
    Truhar, Ninoslav
    Xu, Shufang
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (01) : 280 - 281
  • [5] Recent Progress in Linear Response Eigenvalue Problems
    Bai, Zhaojun
    Li, Ren-Cang
    [J]. EIGENVALUE PROBLEMS: ALGORITHMS, SOFTWARE AND APPLICATIONS IN PETASCALE COMPUTING (EPASA 2015), 2017, 117 : 287 - 304
  • [7] PERTURBATION OF LINKED EIGENVALUE PROBLEMS
    TURYN, L
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (01) : 35 - 40
  • [8] Challenging eigenvalue perturbation problems
    Jiang, EX
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 278 (1-3) : 303 - 307
  • [9] New perturbation bounds of partitioned generalized Hermitian eigenvalue problem
    Xiao, Chuanfu
    Li, Hanyu
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 321 : 422 - 430
  • [10] ASYMPTOTIC PERTURBATION OF PALINDROMIC EIGENVALUE PROBLEMS
    Li, Tie-Xiang
    Chu, Eric King-wah
    Wang, Chern-Shuh
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2010, 14 (3A): : 781 - 793