The Schrodinger and Pauli-Dirac Oscillators in Noncommutative Phase Space

被引:14
|
作者
Santos, E. S. [1 ]
de Melo, G. R. [2 ]
机构
[1] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
关键词
Galilean covariant formalism; Pauli-Dirac oscillator; Noncommutative phase space; MANY-BODY THEORY; GALILEAN COVARIANCE; QUANTUM-MECHANICS; QUANTIZATION; INVARIANCE; PLANE;
D O I
10.1007/s10773-010-0529-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the non-relativistic Schrodinger and Pauli-Dirac oscillators in noncommutative phase space using the five-dimensional Galilean covariant framework. The Schrodinger oscillator presented the correct energy spectrum whose non isotropy is caused by the noncommutativity with an expected similarity between this system and the particle in a magnetic field. A general Hamiltonian for the 3-dimensional Galilean covariant Pauli-Dirac oscillator was obtained and it presents the usual terms that appears in commutative space, like Zeeman effect and spin-orbit terms. We find that the Hamiltonian also possesses terms involving the noncommutative parameters that are related to a type of magnetic moment and an electric dipole moment.
引用
收藏
页码:332 / 338
页数:7
相关论文
共 50 条
  • [31] Dirac equation in noncommutative space for hydrogen atom
    Adorno, T. C.
    Baldiotti, M. C.
    Chaichian, M.
    Gitman, D. M.
    Tureanu, A.
    [J]. PHYSICS LETTERS B, 2009, 682 (02) : 235 - 239
  • [32] Gauge theory and a Dirac operator on a noncommutative space
    Habara, Yoshinobu
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2006, 116 (04): : 771 - 781
  • [33] Relativistic Oscillators in a Noncommutative Space and in a Magnetic Field
    Behrouz, Mirza
    Rasoul, Narimani
    Somyeh, Zare
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 55 (03) : 405 - 409
  • [34] Preparation of Schrodinger cat states in noncommutative space
    Wu, Y
    Yang, XX
    [J]. PHYSICAL REVIEW D, 2006, 73 (06):
  • [35] Quantum phase transitions in the noncommutative Dirac oscillator
    Panella, O.
    Roy, P.
    [J]. PHYSICAL REVIEW A, 2014, 90 (04):
  • [36] A noncommutative space approach to confined Dirac fermions in graphene
    Dayi, Oemer F.
    Jellal, Ahmed
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (06)
  • [37] Relativistic Oscillators in a Noncommutative Space: a Path Integral Approach
    Benzair, H.
    Merad, M.
    Boudjedaa, T.
    Makhlouf, A.
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (1-2): : 77 - 88
  • [38] Oscillators in a (2+1)-dimensional noncommutative space
    Vega, F.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
  • [39] Noncommutative Integration of the Dirac Equation in a Flat Space and in the de Sitter Space
    V. A. Tyumentsev
    V. V. Klishevich
    [J]. Russian Physics Journal, 2003, 46 (9) : 891 - 896
  • [40] LENGTH IN A NONCOMMUTATIVE PHASE SPACE
    Gnatenko, Kh. P.
    Tkachuk, V. M.
    [J]. UKRAINIAN JOURNAL OF PHYSICS, 2018, 63 (02): : 102 - 109