The Schrodinger and Pauli-Dirac Oscillators in Noncommutative Phase Space

被引:14
|
作者
Santos, E. S. [1 ]
de Melo, G. R. [2 ]
机构
[1] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
[2] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
关键词
Galilean covariant formalism; Pauli-Dirac oscillator; Noncommutative phase space; MANY-BODY THEORY; GALILEAN COVARIANCE; QUANTUM-MECHANICS; QUANTIZATION; INVARIANCE; PLANE;
D O I
10.1007/s10773-010-0529-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the non-relativistic Schrodinger and Pauli-Dirac oscillators in noncommutative phase space using the five-dimensional Galilean covariant framework. The Schrodinger oscillator presented the correct energy spectrum whose non isotropy is caused by the noncommutativity with an expected similarity between this system and the particle in a magnetic field. A general Hamiltonian for the 3-dimensional Galilean covariant Pauli-Dirac oscillator was obtained and it presents the usual terms that appears in commutative space, like Zeeman effect and spin-orbit terms. We find that the Hamiltonian also possesses terms involving the noncommutative parameters that are related to a type of magnetic moment and an electric dipole moment.
引用
下载
收藏
页码:332 / 338
页数:7
相关论文
共 50 条
  • [21] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces*
    Wei, Jing-Ying
    Wang, Qing
    Jing, Jian
    CHINESE PHYSICS B, 2021, 30 (11)
  • [22] System of interacting harmonic oscillators in rotationally invariant noncommutative phase space
    Gnatenko, Kh P.
    PHYSICS LETTERS A, 2018, 382 (46) : 3317 - 3324
  • [23] DIRAC OSCILLATOR IN DYNAMICAL NONCOMMUTATIVE SPACE
    Haouam, Ilyas
    ACTA POLYTECHNICA, 2021, 61 (06) : 689 - 702
  • [24] Exact Green function for neutral Pauli-Dirac particle with anomalous magnetic momentum in linear magnetic field
    Merdaci, Abdeldjalil
    Jellal, Ahmed
    Chetouani, Lyazid
    ANNALS OF PHYSICS, 2017, 384 : 116 - 127
  • [25] Quasi-exact solvability of Dirac-Pauli equation and generalized Dirac oscillators
    Ho, CL
    Roy, P
    ANNALS OF PHYSICS, 2004, 312 (01) : 161 - 176
  • [26] Deformed Schrodinger symmetry on noncommutative space
    Banerjee, R.
    EUROPEAN PHYSICAL JOURNAL C, 2006, 47 (02): : 541 - 545
  • [27] Dirac Oscillator in Noncommutative Phase Space and (Anti)-Jaynes-Cummings Models
    Zhi-Yu Luo
    Qing Wang
    Xiao Li
    Jian Jing
    International Journal of Theoretical Physics, 2012, 51 : 2143 - 2151
  • [28] Explicit form of Berry phase for time dependent harmonic oscillators in noncommutative space
    Dutta, Manjari
    Ganguly, Shreemoyee
    Gangopadhyay, Sunandan
    PHYSICA SCRIPTA, 2022, 97 (10)
  • [29] THE EIGENVALUES OF TWO MODES COUPLED HARMONIC OSCILLATORS IN NONCOMMUTATIVE PHASE-SPACE
    Diao, Xin-Feng
    Long, Chao-Yun
    Guo, Guang-Jie
    Long, Zheng-Wen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2011, 26 (09): : 1561 - 1567
  • [30] Dirac Oscillator in Noncommutative Phase Space and (Anti)-Jaynes-Cummings Models
    Luo, Zhi-Yu
    Wang, Qing
    Li, Xiao
    Jing, Jian
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (07) : 2143 - 2151