On the Smoothness of the Partition Function for Multiple Schramm-Loewner Evolutions

被引:5
|
作者
Jahangoshahi, Mohammad [1 ]
Lawler, Gregory F. [2 ]
机构
[1] Univ Chicago, Dept Stat, 5747 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Math, 5734 Univ Ave, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Schramm-Loewner evolution; Partition function; Brownian loop measure; Differential equations; REVERSIBILITY;
D O I
10.1007/s10955-018-2165-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the measure on multiple chordal Schramm-Loewner evolution (SLE kappa) curves. We establish a derivative estimate and use it to give a direct proof that the partition function is C-2 if kappa < 4.
引用
收藏
页码:1353 / 1368
页数:16
相关论文
共 50 条
  • [21] Scaling limits and the Schramm-Loewner evolution
    Lawler, Gregory F.
    PROBABILITY SURVEYS, 2011, 8 : 442 - 495
  • [22] A NATURAL PARAMETRIZATION FOR THE SCHRAMM-LOEWNER EVOLUTION
    Lawler, Gregory F.
    Sheffield, Scott
    ANNALS OF PROBABILITY, 2011, 39 (05): : 1896 - 1937
  • [23] Coastlines violate the Schramm-Loewner Evolution
    Abril, Leidy M. L.
    Oliveira, Erneson A.
    Moreira, Andre A.
    Andrade Jr, Jose S.
    Herrmann, Hans J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 653
  • [24] Multiple Schramm–Loewner Evolutions and Statistical Mechanics Martingales
    Michel Bauer
    Denis Bernard
    Kalle Kytölä
    Journal of Statistical Physics, 2005, 120 : 1125 - 1163
  • [26] Shortest path and Schramm-Loewner Evolution
    N. Posé
    K. J. Schrenk
    N. A. M. Araújo
    H. J. Herrmann
    Scientific Reports, 4
  • [27] Shortest path and Schramm-Loewner Evolution
    Pose, N.
    Schrenk, K. J.
    Araujo, N. A. M.
    Herrmann, H. J.
    SCIENTIFIC REPORTS, 2014, 4
  • [28] Active spanning trees and Schramm-Loewner evolution
    Kassel, Adrien
    Wilson, David B.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [29] Multiple backward Schramm-Loewner evolution and coupling with Gaussian free field
    Koshida, Shinji
    LETTERS IN MATHEMATICAL PHYSICS, 2021, 111 (02)