Exploring DFT plus U parameter space with a Bayesian calibration assisted by Markov chain Monte Carlo sampling

被引:10
|
作者
Tavadze, Pedram [1 ]
Boucher, Reese [1 ]
Avendano-Franco, Guillermo [1 ]
Kocan, Keenan X. [2 ]
Singh, Sobhit [3 ]
Dovale-Farelo, Viviana [1 ]
Ibarra-Hernandez, Wilfredo [4 ]
Johnson, Matthew B. [1 ]
Mebane, David S. [2 ]
Romero, Aldo H. [1 ]
机构
[1] West Virginia Univ, Dept Phys & Astron, Morgantown, WV 26506 USA
[2] West Virginia Univ, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[3] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ USA
[4] Benemerita Univ Autonoma Puebla, Fac Ingn, Apdo Postal J-39, Puebla 72570, Mexico
基金
美国国家科学基金会;
关键词
GENERALIZED GRADIENT APPROXIMATION; DENSITY-FUNCTIONAL THEORY; MEAN-FIELD THEORY; ELECTRONIC-STRUCTURE CALCULATIONS; TOTAL-ENERGY CALCULATIONS; PHOTOELECTRON-SPECTROSCOPY; CORRELATED MATERIALS; MAGNETIC-PROPERTIES; CRYSTAL-STRUCTURE; LDA+U METHOD;
D O I
10.1038/s41524-021-00651-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The density-functional theory is widely used to predict the physical properties of materials. However, it usually fails for strongly correlated materials. A popular solution is to use the Hubbard correction to treat strongly correlated electronic states. Unfortunately, the values of the Hubbard U and J parameters are initially unknown, and they can vary from one material to another. In this semi-empirical study, we explore the U and J parameter space of a group of iron-based compounds to simultaneously improve the prediction of physical properties (volume, magnetic moment, and bandgap). We used a Bayesian calibration assisted by Markov chain Monte Carlo sampling for three different exchange-correlation functionals (LDA, PBE, and PBEsol). We found that LDA requires the largest U correction. PBE has the smallest standard deviation and its U and J parameters are the most transferable to other iron-based compounds. Lastly, PBE predicts lattice parameters reasonably well without the Hubbard correction.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Exploring Mass Perception With Markov Chain Monte Carlo
    Cohen, Andrew L.
    Ross, Michael G.
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE, 2009, 35 (06) : 1833 - 1844
  • [32] Structural physical parameter identification using Bayesian estimation with Markov Chain Monte Carlo method
    Li, Xiao-Hua
    Xie, Li-Li
    Gong, Mao-Sheng
    Zhendong yu Chongji/Journal of Vibration and Shock, 2010, 29 (04): : 59 - 63
  • [33] A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes
    Olivares, G.
    Teferle, F. N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (09) : 2405 - 2412
  • [34] Zero variance Markov chain Monte Carlo for Bayesian estimators
    Antonietta Mira
    Reza Solgi
    Daniele Imparato
    Statistics and Computing, 2013, 23 : 653 - 662
  • [35] Adaptive Markov Chain Monte Carlo for Bayesian Variable Selection
    Ji, Chunlin
    Schmidler, Scott C.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 708 - 728
  • [36] A Markov chain Monte Carlo algorithm for Bayesian policy search
    Aghaei, Vahid Tavakol
    Onat, Ahmet
    Yildirim, Sinan
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2018, 6 (01): : 438 - 455
  • [37] A Bayesian Markov chain Monte Carlo solution of the bilinear problem
    Ochs, AF
    Stoyanova, RS
    Brown, TR
    Rooney, WD
    Springer, CS
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2001, 567 : 274 - 284
  • [38] Challenges in Markov Chain Monte Carlo for Bayesian Neural Networks
    Papamarkou, Theodore
    Hinkle, Jacob
    Young, M. Todd
    Womble, David
    STATISTICAL SCIENCE, 2022, 37 (03) : 425 - 442
  • [39] Computation in Bayesian econometrics: An introduction to Markov chain Monte Carlo
    Albert, J
    Chib, S
    ADVANCES IN ECONOMETRICS, 1996, 11 : 3 - 24
  • [40] Zero variance Markov chain Monte Carlo for Bayesian estimators
    Mira, Antonietta
    Solgi, Reza
    Imparato, Daniele
    STATISTICS AND COMPUTING, 2013, 23 (05) : 653 - 662