Challenges in Markov Chain Monte Carlo for Bayesian Neural Networks

被引:11
|
作者
Papamarkou, Theodore [1 ]
Hinkle, Jacob [2 ]
Young, M. Todd [2 ]
Womble, David [3 ]
机构
[1] Univ Manchester, Dept Math, Math Data Sci, Manchester, Lancs, England
[2] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37830 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
关键词
Bayesian inference; Bayesian neural networks; convergence diagnostics; Markov chain Monte Carlo; posterior predictive distribution; POSTERIOR DISTRIBUTIONS; APPROXIMATION; CONVERGENCE; PRIORS;
D O I
10.1214/21-STS840
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo (MCMC) methods have not been broadly adopted in Bayesian neural networks (BNNs). This paper initially reviews the main challenges in sampling from the parameter posterior of a neural network via MCMC. Such challenges culminate to lack of convergence to the parameter posterior. Nevertheless, this paper shows that a nonconverged Markov chain, generated via MCMC sampling from the parameter space of a neural network, can yield via Bayesian marginalization a valuable posterior predictive distribution of the output of the neural network. Classification examples based on multilayer perceptrons showcase highly accurate posterior predictive distributions. The postulate of limited scope for MCMC developments in BNNs is partially valid; an asymptotically exact parameter posterior seems less plausible, yet an accurate posterior predictive distribution is a tenable research avenue.
引用
收藏
页码:425 / 442
页数:18
相关论文
共 50 条
  • [1] Bayesian Computation Via Markov Chain Monte Carlo
    Craiu, Radu V.
    Rosenthal, Jeffrey S.
    [J]. ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 1, 2014, 1 : 179 - 201
  • [2] Reflections on Bayesian inference and Markov chain Monte Carlo
    Craiu, Radu, V
    Gustafson, Paul
    Rosenthal, Jeffrey S.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (04): : 1213 - 1227
  • [3] Bayesian inference and Markov chain Monte Carlo in imaging
    Higdon, DM
    Bowsher, JE
    [J]. MEDICAL IMAGING 1999: IMAGE PROCESSING, PTS 1 AND 2, 1999, 3661 : 2 - 11
  • [4] Bayesian generalised ensemble Markov chain Monte Carlo
    Frellsen, Jes
    Winther, Ole
    Ghahramani, Zoubin
    Ferkinghoff-Borg, Jesper
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 408 - 416
  • [5] Bayesian history matching using artificial neural network and Markov Chain Monte Carlo
    Maschio, Celio
    Schiozer, Denis Jose
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 123 : 62 - 71
  • [6] Markov Chain Monte Carlo Simulation for Bayesian Hidden Markov Models
    Chan, Lay Guat
    Ibrahim, Adriana Irawati Nur Binti
    [J]. 4TH INTERNATIONAL CONFERENCE ON QUANTITATIVE SCIENCES AND ITS APPLICATIONS (ICOQSIA 2016), 2016, 1782
  • [7] Zero variance Markov chain Monte Carlo for Bayesian estimators
    Antonietta Mira
    Reza Solgi
    Daniele Imparato
    [J]. Statistics and Computing, 2013, 23 : 653 - 662
  • [8] A Markov chain Monte Carlo algorithm for Bayesian policy search
    Aghaei, Vahid Tavakol
    Onat, Ahmet
    Yildirim, Sinan
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2018, 6 (01): : 438 - 455
  • [9] Adaptive Markov Chain Monte Carlo for Bayesian Variable Selection
    Ji, Chunlin
    Schmidler, Scott C.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (03) : 708 - 728
  • [10] A Bayesian Markov chain Monte Carlo solution of the bilinear problem
    Ochs, AF
    Stoyanova, RS
    Brown, TR
    Rooney, WD
    Springer, CS
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2001, 567 : 274 - 284