A new Monte Carlo-based fitting method

被引:3
|
作者
Pedroni, P. [1 ]
Sconfietti, S. [1 ,2 ]
机构
[1] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
关键词
Monte Carlo method; parametric bootstrap; least squares; Compton scattering; COMPTON-SCATTERING; MAGNETIC POLARIZABILITIES; PROTON; PHOTONS; 50-MEV;
D O I
10.1088/1361-6471/ab6c31
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a new fitting technique based on the parametric bootstrap method, which relies on the idea of producing artificial measurements using the estimated probability distribution of the experimental data. In order to investigate the main properties of this technique, we develop a toy model and we analyze several fitting conditions with a comparison of our results to the ones obtained using both the standard chi(2) minimization procedure and a Bayesian approach. Furthermore, we investigate the effect of the data systematic uncertainties both on the probability distribution of the fit parameters and on the shape of the expected goodness-of-fit distribution. Our conclusion is that, when systematic uncertainties are included in the analysis, only the bootstrap procedure is able to provide reliable confidence intervals and p-values, thus improving the results given by the standard chi(2) minimization approach. Our technique is then applied to an actual physics process, the real Compton scattering off the proton, thus confirming both the portability and the validity of the bootstrap-based fit method.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] NEWTON'S METHOD FOR MONTE CARLO-BASED RESIDUALS
    Willert, Jeffrey
    Chen, Xiaojun
    Kelley, C. T.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 1738 - 1757
  • [2] A New Monte Carlo-Based Error Rate Estimator
    Hefny, Ahmed
    Atiya, Amir
    [J]. ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2010, 5998 : 37 - 47
  • [3] Monte!Carlo-based method to determine the strength of a neutron source
    Vega-Carrillo, H. R.
    Manzanares-Acuna, E.
    Hernandez-Davila, V. M.
    Chacon-Ruiz, A.
    Mercado, G. A.
    Gallego, E.
    Lorente, A.
    [J]. RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2007, 162 (10-12): : 771 - 776
  • [4] A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis
    Rofatto, Vinicius Francisco
    Matsuoka, Marcelo Tomio
    Klein, Ivandro
    Veronez, Mauricio Roberto
    Silveira Jr, Luiz Gonzaga
    [J]. REMOTE SENSING, 2020, 12 (05)
  • [5] Monte Carlo-based scatter correction method in brain SPET imaging
    Cot, A
    Falcón, C
    Bullich, S
    Pareto, D
    Crespo, C
    Calviño, F
    Ros, D
    Pavia, J
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2004, 31 : S403 - S403
  • [6] New Monte Carlo-based method to evaluate fission fraction uncertainties for the reactor antineutrino experiment
    Ma, X. B.
    Qiu, R. M.
    Chen, Y. X.
    [J]. NUCLEAR PHYSICS A, 2017, 958 : 211 - 218
  • [7] A Monte Carlo-Based Method to Include Random Errors in Robust Optimization
    Montero, A. Barragan
    Souris, K.
    Lee, J.
    Sterpin, E.
    [J]. MEDICAL PHYSICS, 2016, 43 (06) : 3800 - 3801
  • [8] Monte Carlo-based ensemble method for prediction of grassland fire spread
    Cruz, Miguel G.
    [J]. INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2010, 19 (04) : 521 - 530
  • [9] THE CELL-TO-BOUNDARY METHOD IN MONTE CARLO-BASED DYNAMIC PSA
    MARSEGUERRA, M
    ZIO, E
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 1995, 48 (03) : 199 - 204
  • [10] Markov chain Monte Carlo-based method for flaw detection in beams
    Glaser, Ronald E.
    Lee, Christopher L.
    Nitao, John J.
    Hickling, Tracy L.
    Hanley, William G.
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 2007, 133 (12): : 1258 - 1267