New Monte Carlo-based method to evaluate fission fraction uncertainties for the reactor antineutrino experiment

被引:2
|
作者
Ma, X. B. [1 ]
Qiu, R. M. [1 ]
Chen, Y. X. [1 ]
机构
[1] North China Elect Power Univ, Beijing 102206, Peoples R China
基金
中国国家自然科学基金;
关键词
Monte Carlo-based method; Fission fraction uncertainty; Reactor antineutrino experiment;
D O I
10.1016/j.nuclphysa.2016.12.005
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Uncertainties regarding fission fractions are essential in understanding antineutrino flux predictions in reactor antineutrino experiments. A new Monte Carlo-based method to evaluate the covariance coefficients between isotopes is proposed. The covariance coefficients are found to vary with reactor burnup and may change from positive to negative because of balance effects in fissioning. For example, between U-235 and (PU)-P-239, the covariance coefficient changes from 0.15 to 0.13. Using the equation relating fission fraction and atomic density, consistent uncertainties in the fission fraction and covariance matrix were obtained. The antineutrino flux uncertainty is 0.55%, which does not vary with reactor burnup. The new value is about 8.3% smaller. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 50 条
  • [1] A new Monte Carlo-based fitting method
    Pedroni, P.
    Sconfietti, S.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2020, 47 (05)
  • [2] Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark
    Renner, F.
    Wulff, J.
    Kapsch, R-P
    Zink, K.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (19): : 7637 - 7653
  • [3] Reporting and analyzing statistical uncertainties in Monte Carlo-based treatment planning
    Chetty, Indrin J.
    Rosu, Mihaela
    Kessler, Marc L.
    Fraass, Benedick A.
    Ten Haken, Randall K.
    Kong, Feng-Ming
    McShan, Daniel L.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 65 (04): : 1249 - 1259
  • [4] NEWTON'S METHOD FOR MONTE CARLO-BASED RESIDUALS
    Willert, Jeffrey
    Chen, Xiaojun
    Kelley, C. T.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (04) : 1738 - 1757
  • [5] A New Monte Carlo-Based Error Rate Estimator
    Hefny, Ahmed
    Atiya, Amir
    [J]. ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, PROCEEDINGS, 2010, 5998 : 37 - 47
  • [6] A Diffusion Monte Carlo-Based Algorithm for Estimation of Higher Modes of a Reactor
    Srivastava, Argala
    Singh, K. P.
    Mallick, Amod Kishore
    Kannan, Umasankari
    Degweker, S. B.
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 2019, 193 (09) : 1044 - 1053
  • [7] Use of a Heterogeneous Arccheck Phantom to Evaluate Monte Carlo-Based Planning System
    Poli, E.
    Galhardas, J.
    Malveiro, R.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E696 - E696
  • [8] Monte!Carlo-based method to determine the strength of a neutron source
    Vega-Carrillo, H. R.
    Manzanares-Acuna, E.
    Hernandez-Davila, V. M.
    Chacon-Ruiz, A.
    Mercado, G. A.
    Gallego, E.
    Lorente, A.
    [J]. RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2007, 162 (10-12): : 771 - 776
  • [9] A Monte Carlo-Based Outlier Diagnosis Method for Sensitivity Analysis
    Rofatto, Vinicius Francisco
    Matsuoka, Marcelo Tomio
    Klein, Ivandro
    Veronez, Mauricio Roberto
    Silveira Jr, Luiz Gonzaga
    [J]. REMOTE SENSING, 2020, 12 (05)
  • [10] Development of Monte Carlo-based pebble bed reactor fuel management code
    Setiadipura, Topan
    Obara, Toru
    [J]. ANNALS OF NUCLEAR ENERGY, 2014, 71 : 313 - 321