A new Monte Carlo-based fitting method

被引:3
|
作者
Pedroni, P. [1 ]
Sconfietti, S. [1 ,2 ]
机构
[1] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy
[2] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
关键词
Monte Carlo method; parametric bootstrap; least squares; Compton scattering; COMPTON-SCATTERING; MAGNETIC POLARIZABILITIES; PROTON; PHOTONS; 50-MEV;
D O I
10.1088/1361-6471/ab6c31
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a new fitting technique based on the parametric bootstrap method, which relies on the idea of producing artificial measurements using the estimated probability distribution of the experimental data. In order to investigate the main properties of this technique, we develop a toy model and we analyze several fitting conditions with a comparison of our results to the ones obtained using both the standard chi(2) minimization procedure and a Bayesian approach. Furthermore, we investigate the effect of the data systematic uncertainties both on the probability distribution of the fit parameters and on the shape of the expected goodness-of-fit distribution. Our conclusion is that, when systematic uncertainties are included in the analysis, only the bootstrap procedure is able to provide reliable confidence intervals and p-values, thus improving the results given by the standard chi(2) minimization approach. Our technique is then applied to an actual physics process, the real Compton scattering off the proton, thus confirming both the portability and the validity of the bootstrap-based fit method.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Multi-Scale Monte Carlo-Based Tracking Method for Abrupt Motion
    Zhang, Guanghao
    Lu, Yao
    Chen, Mukai
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 119 - 123
  • [22] Mesh Optimization for Monte Carlo-Based Optical Tomography
    Edmans, Andrew
    Intes, Xavier
    [J]. PHOTONICS, 2015, 2 (02): : 375 - 391
  • [23] Monte Carlo-based sensitivity analysis of an electrochemical capacitor
    Kannan, Vishvak
    Somasundaram, Karthik
    Fisher, Adrian
    Birgersson, Erik
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (11) : 16947 - 16962
  • [24] Verification of a Monte Carlo-based treatment planning toot
    Chow, J.
    Leung, M.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2007, 84 : S92 - S92
  • [25] Monte Carlo-based simulation of dynamic jaws tomotherapy
    Sterpin, E.
    Chen, Y.
    Chen, Q.
    Lu, W.
    Mackie, T. R.
    Vynckier, S.
    [J]. MEDICAL PHYSICS, 2011, 38 (09) : 5230 - 5238
  • [26] Monte Carlo-based scatter correction for the SMARTZOOM collimator
    Dietze, Martijn M. A.
    Kunnen, Britt
    Stella, Martina
    de Jong, Hugo W. A. M.
    [J]. EJNMMI PHYSICS, 2020, 7 (01)
  • [27] Monte Carlo-based analysis of PET scatter components
    Adam, LE
    Bellemann, ME
    Brix, G
    Lorenz, WJ
    [J]. JOURNAL OF NUCLEAR MEDICINE, 1996, 37 (12) : 2024 - 2029
  • [28] Monte Carlo-based simulations of the formation of graphite oxide
    Paci, Jeffrey T.
    Belytschko, Ted
    Schatz, George C.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [29] Monte Carlo-based scatter correction for the SMARTZOOM collimator
    Martijn M. A. Dietze
    Britt Kunnen
    Martina Stella
    Hugo W. A. M. de Jong
    [J]. EJNMMI Physics, 7
  • [30] Sustainability enhancement under uncertainty: a Monte Carlo-based simulation and system optimization method
    Liu, Zheng
    Huang, Yinlun
    [J]. CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2015, 17 (07) : 1757 - 1768