Pulmonary CT Images Segmentation using CNN and UNet Models of Deep Learning

被引:5
|
作者
Shaziya, Humera [1 ]
Shyamala, K. [1 ]
机构
[1] Osmania Univ, UCE, Dept CSE, Hyderabad, India
关键词
Pulmonary Image Segmentation; UNet Model; Convolutional Neural Networks Model; Deep Learning; Medical Imaging; AUTOMATIC LUNG SEGMENTATION;
D O I
10.1109/PuneCon50868.2020.9362463
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image Segmentation performs segregation of distinct segments of an image. Lung segmentation separate different elements of thoracic region. It is an essential prerequisite to several analysis tasks performed on the Computed Tomography (CT) images of lungs. Computational complexity is greatly reduced only when the required area is segregated from the entire CT image. Automated segmentation facilitates quick processing since it requires relatively less time to process more images. Conventional computer based segmentation methods require extensive support for determining the features. Users develop the features and provide to the system which then utilize those features to delineate the required regions. Recent advancements in deep learning showed optimal results in solving numerous image recognition and segmentation problems. The significant characteristic of deep learning is that the model itself learns the features from the input images and then apply the learned features to process new images. The most successful model of deep learning is Convolutional Neural Network (CNN) has outperformed earlier techniques for image recognition, object and face detection and is considered to be the most successful architecture of deep learning. CNN has also been applied for segmentation tasks. In this proposed work, CNN and UNet models have been implemented to evaluate the processing of medical images. The focus of the work is on CT images of lungs. Results obtained on the lungs dataset of 267 images on CNN is 81.34% and UNet is 82.61%. Thus U-Net has improved the dice coefficient by 1.27%. The experiments show that UNet model outperforms CNN model to segment the lung fields in CT images.
引用
收藏
页码:195 / 201
页数:7
相关论文
共 50 条
  • [41] Automatic segmentation of leukocytes images using deep learning
    Backes, Andre Ricardo
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4259 - 4266
  • [42] Blood Cell Images Segmentation using Deep Learning Semantic Segmentation
    Thanh Tran
    Kwon, Oh-Heum
    Kwon, Ki-Ryong
    Lee, Suk-Hwan
    Kang, Kyung-Won
    2018 IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING (ICECE 2018), 2018, : 13 - 16
  • [43] Predicting Malignancy and Invasiveness of Pulmonary Subsolid Nodules on CT Images Using Deep Learning
    Shen, Tianle
    Hou, Runping
    Ye, Xiaodan
    Li, Xiaoyang
    Xiong, Junfeng
    Zhang, Qin
    Zhang, Chenchen
    Cai, Xuwei
    Yu, Wen
    Zhao, Jun
    Fu, Xiaolong
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [44] Computer-Aided Diagnosis of Pulmonary Fibrosis Using Deep Learning and CT Images
    Christe, Andreas
    Peters, Alan A.
    Drakopoulos, Dionysios
    Heverhagen, Johannes T.
    Geiser, Thomas
    Stathopoulou, Thomai
    Christodoulidis, Stergios
    Anthimopoulos, Marios
    Mougiakakou, Stavroula G.
    Ebner, Lukas
    INVESTIGATIVE RADIOLOGY, 2019, 54 (10) : 627 - 632
  • [45] CellSegUNet: an improved deep segmentation model for the cell segmentation based on UNet plus plus and residual UNet models
    Metlek, Sedat
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (11): : 5799 - 5825
  • [46] Segmentation of Clinical Target Volume From CT Images for Cervical Cancer Using Deep Learning
    Huang, Mingxu
    Feng, Chaolu
    Sun, Deyu
    Cui, Ming
    Zhao, Dazhe
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2023, 22
  • [47] Lesion segmentation on 18F-fluciclovine PET/CT images using deep learning
    Wang, Tonghe
    Lei, Yang
    Schreibmann, Eduard
    Roper, Justin
    Liu, Tian
    Schuster, David M.
    Jani, Ashesh B.
    Yang, Xiaofeng
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [48] Fully Automated Segmentation of Globes for Volume Quantification in CT Images of Orbits using Deep Learning
    Umapathy, L.
    Winegar, B.
    MacKinnon, L.
    Hill, M.
    Altbach, M. I.
    Miller, J. M.
    Bilgin, A.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (06) : 1061 - 1069
  • [49] Automated segmentation of insect anatomy from micro-CT images using deep learning
    Toulkeridou, Evropi
    Gutierrez, Carlos Enrique
    Baum, Daniel
    Doya, Kenji
    Economo, Evan P.
    NATURAL SCIENCES, 2023, 3 (04):
  • [50] Multi-class Tissue Segmentation of CT images using an Ensemble Deep Learning method
    Mahmoodian, Naghmeh
    Chakrabarty, Sumit
    Georgiades, Marilena
    Pech, Maciej
    Hoeschen, Christoph
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,