Blood Cell Images Segmentation using Deep Learning Semantic Segmentation

被引:0
|
作者
Thanh Tran [1 ]
Kwon, Oh-Heum [1 ]
Kwon, Ki-Ryong [1 ]
Lee, Suk-Hwan [2 ]
Kang, Kyung-Won [2 ]
机构
[1] Pukyong Natl Univ, Dept IT Convergence & Applicat Engn, Busan, South Korea
[2] Tongmyong Univ, Dept Informat Secur, Busan, South Korea
基金
新加坡国家研究基金会;
关键词
CNN; deep learning; segmentation; SegNet; Vgg-16;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Segmentation of red blood cells (RBCs) and white blood cells (WBCs) in peripheral blood smear images plays an important role in the evaluation and diagnosis a vast of disorders, including infection, leukemia, and some types of cancer. Generally, various image processing techniques are used to enhance the quality of images before the segmentation step. Therefore, the segmentation of blood cells is still a challenge. However, in this research, deep learning semantic segmentation - cutting-edge technology is applied for segmentation red blood cells and white blood cells in blood smear images. The experiment result shows that the global accuracy of our model yielded 89.45%. Besides, the accuracy of the segmentation of white blood cells, red blood cells, and the background of blood smear image reached 94.93%, 91.11%, and 87.32%, respectively.
引用
收藏
页码:13 / 16
页数:4
相关论文
共 50 条
  • [1] Semantic segmentation of multispectral photoacoustic images using deep learning
    Schellenberg, Melanie
    Dreher, Kris K.
    Holzwarth, Niklas
    Isensee, Fabian
    Reinke, Annika
    Schreck, Nicholas
    Seitel, Alexander
    Tizabi, Minu D.
    Maier-Hein, Lena
    Groehl, Janek
    [J]. PHOTOACOUSTICS, 2022, 26
  • [2] Frontispiece: Semantic segmentation of satellite images using deep learning mechanisms
    不详
    [J]. PHOTOGRAMMETRIC RECORD, 2021, 36 (176): : 359 - 359
  • [3] Deep Learning Semantic Segmentation of Feet Using Infrared Thermal Images
    Mejia-Zuluaga, Rafael
    Carlos Aguirre-Arango, Juan
    Collazos-Huertas, Diego
    Daza-Castillo, Jessica
    Valencia-Marulanda, Nestor
    Calderon-Marulanda, Mauricio
    Aguirre-Ospina, Oscar
    Alvarez-Meza, Andres
    Castellanos-Dominguez, German
    [J]. ADVANCES IN ARTIFICIAL INTELLIGENCE-IBERAMIA 2022, 2022, 13788 : 342 - 352
  • [4] Semantic Segmentation of Wheat Stripe Rust Images Using Deep Learning
    Li, Yang
    Qiao, Tianle
    Leng, Wenbo
    Jiao, Wenrui
    Luo, Jing
    Lv, Yang
    Tong, Yiran
    Mei, Xuanjing
    Li, Hongsheng
    Hu, Qiongqiong
    Yao, Qiang
    [J]. AGRONOMY-BASEL, 2022, 12 (12):
  • [5] Bayesian deep learning for semantic segmentation of food images
    Aguilar, Eduardo
    Nagarajan, Bhalaji
    Remeseiro, Beatriz
    Radeva, Petia
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [6] Semantic Segmentation of Autonomous Driving Images by the Combination of Deep Learning and Classical Segmentation
    Hamian, Mohammad Hosein
    Beikmohammadi, Ali
    Ahmadi, Ali
    Nasersharif, Babak
    [J]. 2021 26TH INTERNATIONAL COMPUTER CONFERENCE, COMPUTER SOCIETY OF IRAN (CSICC), 2021,
  • [7] SEMANTIC SEGMENTATION OF TEXT USING DEEP LEARNING
    Lattisi, Tiziano
    Farina, Davide
    Ronchetti, Marco
    [J]. COMPUTING AND INFORMATICS, 2022, 41 (01) : 78 - 97
  • [8] LESION DETECTION IN CT IMAGES USING DEEP LEARNING SEMANTIC SEGMENTATION TECHNIQUE
    Kalinovsky, A.
    Liauchuk, V.
    Tarasau, A.
    [J]. INTERNATIONAL WORKSHOP PHOTOGRAMMETRIC AND COMPUTER VISION TECHNIQUES FOR VIDEO SURVEILLANCE, BIOMETRICS AND BIOMEDICINE, 2017, 42-2 (W4): : 13 - 17
  • [9] Semantic segmentation of high-resolution satellite images using deep learning
    Kuldeep Chaurasia
    Rijul Nandy
    Omkar Pawar
    Ravi Ranjan Singh
    Meghana Ahire
    [J]. Earth Science Informatics, 2021, 14 : 2161 - 2170
  • [10] Semantic Segmentation of Atherosclerosis in Superficial Layer of IVOCT Images Using Deep Learning
    Ren, Xinbo
    Wu, Haiyuan
    Imai, Toshiyuki
    Zhao, Yuxia
    Kubo, Takashi
    [J]. PROCEEDINGS OF 2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY WORKSHOPS AND SPECIAL SESSIONS: (WI-IAT WORKSHOP/SPECIAL SESSION 2021), 2021, : 213 - 218