STABLE COMPUTATIONS WITH GAUSSIAN RADIAL BASIS FUNCTIONS

被引:303
|
作者
Fornberg, Bengt [1 ]
Larsson, Elisabeth [2 ]
Flyer, Natasha [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[3] Natl Ctr Atmospher Res, Inst Math Appl Geosci, Boulder, CO 80305 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 02期
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
radial basis function; ill-conditioning; shape parameter; stable; DOMAIN DECOMPOSITION METHODS; MULTIQUADRIC INTERPOLATION; MULTIVARIATE INTERPOLATION; SHAPE PARAMETER; POLYNOMIALS; SPHERE; ALGORITHM; EQUATIONS; LIMIT;
D O I
10.1137/09076756X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in nontrivial geometries since the method is mesh-free and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly ill-conditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overcome this problem exist: the Contour-Pade method and the RBF-QR method. However, the former is limited to small node sets, and the latter has until now been formulated only for the surface of the sphere. This paper focuses on an RBF-QR formulation for node sets in one, two, and three dimensions. The algorithm is stable for arbitrarily small shape parameters. It can be used for thousands of node points in two dimensions and still more in three dimensions. A sample MATLAB code for the two-dimensional case is provided.
引用
收藏
页码:869 / 892
页数:24
相关论文
共 50 条
  • [31] Evolutionary q-Gaussian Radial Basis Functions for Binary-Classification
    Fernandez-Navarro, F.
    Hervas-Martinez, C.
    Gutierrez, P. A.
    Cruz-Ramirez, M.
    Carbonero-Ruz, M.
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 2, 2010, 6077 : 280 - +
  • [32] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Pankaj K. Mishra
    Sankar K. Nath
    Mrinal K. Sen
    Gregory E. Fasshauer
    Computational Geosciences, 2018, 22 : 1203 - 1218
  • [33] Approximation of input-output maps using Gaussian radial basis functions
    Sandberg, IW
    STABILITY AND CONTROL OF DYNAMICAL SYSTEMS WITH APPLICATIONS: A TRIBUTE TO ANTHONY N. MICHEL, 2003, : 155 - 166
  • [34] Radial basis functions and improved hyperparameter optimisation for gaussian process strain estimation
    Gregg, A. W. T.
    Hendriks, J. N.
    Wensrich, C. M.
    O'Dell, N.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2020, 480 : 67 - 77
  • [35] Approximation of Feature Vectors in Nonnegative Matrix Factorization with Gaussian Radial Basis Functions
    Zdunek, Rafal
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT I, 2012, 7663 : 616 - 623
  • [36] Hybrid Gaussian-cubic radial basis functions for scattered data interpolation
    Mishra, Pankaj K.
    Nath, Sankar K.
    Sen, Mrinal K.
    Fasshauer, Gregory E.
    COMPUTATIONAL GEOSCIENCES, 2018, 22 (05) : 1203 - 1218
  • [37] Quartic Gaussian and Inverse-Quartic Gaussian radial basis functions: The importance of a nonnegative Fourier transform
    Boyd, John P.
    McCauley, Philip W.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (01) : 75 - 88
  • [38] A stable method for the evaluation of Gaussian radial basis function solutions of interpolation and collocation problems
    Rashidinia, J.
    Fasshauer, G. E.
    Khasi, M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (01) : 178 - 193
  • [39] On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants
    Riemenschneider, SD
    Sivakumar, N
    JOURNAL D ANALYSE MATHEMATIQUE, 1999, 79 (1): : 33 - 61
  • [40] On cardinal interpolation by Gaussian radial-basis functions: Properties of fundamental functions and estimates for Lebesgue constants
    S. D. Riemenschneider
    N. Sivakumar
    Journal d’Analyse Mathématique, 1999, 79 : 33 - 61