STABLE COMPUTATIONS WITH GAUSSIAN RADIAL BASIS FUNCTIONS

被引:303
|
作者
Fornberg, Bengt [1 ]
Larsson, Elisabeth [2 ]
Flyer, Natasha [3 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Uppsala Univ, Dept Informat Technol, SE-75105 Uppsala, Sweden
[3] Natl Ctr Atmospher Res, Inst Math Appl Geosci, Boulder, CO 80305 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2011年 / 33卷 / 02期
基金
美国国家科学基金会; 瑞典研究理事会;
关键词
radial basis function; ill-conditioning; shape parameter; stable; DOMAIN DECOMPOSITION METHODS; MULTIQUADRIC INTERPOLATION; MULTIVARIATE INTERPOLATION; SHAPE PARAMETER; POLYNOMIALS; SPHERE; ALGORITHM; EQUATIONS; LIMIT;
D O I
10.1137/09076756X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis function (RBF) approximation is an extremely powerful tool for representing smooth functions in nontrivial geometries since the method is mesh-free and can be spectrally accurate. A perceived practical obstacle is that the interpolation matrix becomes increasingly ill-conditioned as the RBF shape parameter becomes small, corresponding to flat RBFs. Two stable approaches that overcome this problem exist: the Contour-Pade method and the RBF-QR method. However, the former is limited to small node sets, and the latter has until now been formulated only for the surface of the sphere. This paper focuses on an RBF-QR formulation for node sets in one, two, and three dimensions. The algorithm is stable for arbitrarily small shape parameters. It can be used for thousands of node points in two dimensions and still more in three dimensions. A sample MATLAB code for the two-dimensional case is provided.
引用
收藏
页码:869 / 892
页数:24
相关论文
共 50 条
  • [21] Forward deterministic pricing of options using Gaussian radial basis functions
    Rad, Jamal Amani
    Hook, Josef
    Larsson, Elisabeth
    von Sydow, Lina
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 24 : 209 - 217
  • [22] Gaussian radial basis functions and the approximation of input-output maps
    Sandberg, IW
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2003, 31 (05) : 443 - 452
  • [23] Nonuniform Sampling and Recovery of Multidimensional Bandlimited Functions by Gaussian Radial-Basis Functions
    B. A. Bailey
    T. Schlumprecht
    N. Sivakumar
    Journal of Fourier Analysis and Applications, 2011, 17 : 519 - 533
  • [24] Complexity of Gaussian-radial-basis networks approximating smooth functions
    Kainen, Paul C.
    Kurkova, Vera
    Sanguineti, Marcello
    JOURNAL OF COMPLEXITY, 2009, 25 (01) : 63 - 74
  • [25] Gaussian radial basis functions and the approximation of input-output maps
    Sandberg, IW
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 3635 - 3640
  • [26] Adaptive equalization of a nonlinear channel by means of Gaussian radial basis functions
    Miyake, M
    Oishi, K
    Yamaguchi, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1997, 80 (06): : 42 - 53
  • [27] Radial Basis Functions
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 61 - 98
  • [28] Gaussian radial‐basis functions: Cardinal interpolation of ℓp and power‐growth data
    S.D. Riemenschneider
    N. Sivakumar
    Advances in Computational Mathematics, 1999, 11 : 229 - 251
  • [29] Modal-based phase retrieval using Gaussian radial basis functions
    Piscaer, P. J.
    Gupta, A.
    Soloviev, O.
    Verhaegen, M.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2018, 35 (07) : 1233 - 1242
  • [30] APPROXIMATION OF BACKWARD HEAT CONDUCTION PROBLEM USING GAUSSIAN RADIAL BASIS FUNCTIONS
    Abbasbandy, S.
    Azarnavid, B.
    Hashim, I.
    Alsaedi, A.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 67 - 76