Atomic Layer Deposition of Ruthenium Films from (Ethylcyclopentadienyl)(pyrrolyl)ruthenium and Oxygen

被引:50
|
作者
Kukli, Kaupo [1 ,2 ]
Kemell, Marianna [1 ]
Puukilainen, Esa [1 ]
Aarik, Jaan [2 ]
Aidla, Aleks [2 ]
Sajavaara, Timo [3 ]
Laitinen, Mikko [3 ]
Tallarida, Massimo [4 ]
Sundqvist, Jonas [5 ]
Ritala, Mikko [1 ]
Leskela, Markku [1 ]
机构
[1] Univ Helsinki, Dept Chem, FI-00014 Helsinki, Finland
[2] Univ Tartu, Inst Phys, Dept Mat Sci, EE-51014 Tartu, Estonia
[3] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland
[4] Brandenburg Tech Univ Cottbus, Dept Phys, D-03046 Cottbus, Germany
[5] Fraunhofer Ctr Nanoelect Technol, D-01099 Dresden, Germany
基金
芬兰科学院;
关键词
CHEMICAL-VAPOR-DEPOSITION; TIO2; THIN-FILMS; GATE ELECTRODES; RU ELECTRODE; CAPACITOR; GROWTH; ZRO2; TIN; BARRIER; HFO2;
D O I
10.1149/1.3533387
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ru films were grown by atomic layer deposition in the temperature range of 275-350 degrees C using (ethylcyclopentadienyl)(pyrrolyl)ruthenium and air or oxygen as precursors on HF-etched Si, SiO2, ZrO2, and TiN substrates. Conformal growth was examined on three-dimensional silicon substrates with 20: 1 aspect ratio. ZrO2 promoted the nucleation of Ru most efficiently compared to other substrates, but the films roughened quickly on ZrO2 with increasing film thickness. The minimum number of cycles required to form continuous and conductive metal layers could be decreased by increasing the length of the oxygen pulse. In order to obtain well-conducting Ru films growth to thicknesses of at least 8-10 nm on any surface was necessary. Resistivities in the ranges of 30-60 and 14-16 mu Omega . cm were achieved for 4-6 and 10-15 nm thick films, respectively. Delamination became an issue in the Ru films grown to thicknesses about 10 nm and higher. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3533387] All rights reserved.
引用
收藏
页码:D158 / D165
页数:8
相关论文
共 50 条
  • [21] Impact of the Plasma Ambient and the Ruthenium Precursor on the Growth of Ruthenium Films by Plasma Enhanced Atomic Layer Deposition
    Swerts, J.
    Delabie, A.
    Salimullah, M. M.
    Popovici, M.
    Kim, M. -S.
    Schaekers, M.
    Van Elshocht, S.
    ECS SOLID STATE LETTERS, 2012, 1 (02) : P19 - P21
  • [22] Effect of incubation time on deposition behavior of Ruthenium films by MOCVD using (2,4-Dimethylpentadienyl)(ethylcyclopentadienyl)Ruthenium
    Hirano, Masaki
    Kawano, Kazuhisa
    Funakubo, Hiroshi
    ASIAN CERAMIC SCIENCE FOR ELECTRONICS III AND ELECTROCERAMICS IN JAPAN XII, 2010, 421-422 : 87 - 90
  • [23] Ruthenium/aerogel nanocomposites via atomic layer deposition
    Biener, Juergen
    Baumann, Theodore F.
    Wang, Yinmin
    Nelson, Erik J.
    Kucheyev, Sergei O.
    Hamza, Alex V.
    Kemell, Marianna
    Ritala, Mikko
    Leskela, Markku
    NANOTECHNOLOGY, 2007, 18 (05)
  • [24] Electrochemical atomic layer deposition of copper nanofilms on ruthenium
    Gebregziabiher, Daniel K.
    Kim, Youn-Geun
    Thambidurai, Chandru
    Ivanova, Valentina
    Haumesser, Paul-Henri
    Stickney, John L.
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (08) : 1271 - 1276
  • [25] Thermal atomic layer deposition of ruthenium metal thin films using nonoxidative coreactants
    Cwik, Stefan
    Woods, Keenan N.
    Saly, Mark J.
    Knisley, Thomas J.
    Winter, Charles H.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (01):
  • [26] Advanced Fabrication of Ultrathin Ruthenium Films Using Synergistic Atomic Layer Deposition and Etching
    Lee, Jeongbin
    Kim, Jung-Tae
    Oh, Jieun
    Lee, Dongjun
    Lee, Seo-Hyun
    Kim, Hyekyung
    Oh, Jiwoo
    Wang, Younseon
    Kim, Woo-Hee
    SMALL METHODS, 2025,
  • [27] Seed layer free conformal ruthenium film deposition on hole substrates by MOCVD using (2,4-dimethylpentadienyl)(ethylcyclopentadienyl)ruthenium
    Kawano, Kazuhisa
    Nagai, Atsushi
    Kosuge, Hiroaki
    Shibutami, Tetsuo
    Oshima, Noriaki
    Funakubo, Hiroshi
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (07) : C107 - C109
  • [28] Low Temperature Atomic Layer Deposition of Ruthenium Thin Films Using Isopropylmethylbenzene-Cyclohexadiene-Ruthenium and O2
    Eom, Tae-Kwang
    Sari, Windu
    Choi, Kyu-Jeong
    Shin, Woong-Chul
    Kim, Jae Hyun
    Lee, Do-Joong
    Kim, Ki-Bum
    Sohn, Hyunchul
    Kim, Soo-Hyun
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (11) : D85 - D88
  • [29] Thin MnO and NiO films grown using atomic layer deposition from ethylcyclopentadienyl type of precursors
    Lu, H. L.
    Scarel, G.
    Li, X. L.
    Fanciulli, M.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (24) : 5464 - 5468
  • [30] Oxidation of ruthenium thin films using atomic oxygen
    McCoy, A. P.
    Bogan, J.
    Brady, A.
    Hughes, G.
    THIN SOLID FILMS, 2015, 597 : 112 - 116