Frobenius finds non-monogenic division fields of abelian varieties

被引:1
|
作者
Smith, Hanson [1 ]
机构
[1] Univ Connecticut, Dept Math, 341 Mansfield Rd U1009, Storrs, CT 06269 USA
关键词
Frobenius morphism; monogenic; power integral basis; division field; torsion field; CHARACTERISTIC-POLYNOMIALS; ELLIPTIC-CURVES; TORSION POINTS; FINITE-FIELDS; DIMENSIONS; SURFACES; NUMBERS; RINGS;
D O I
10.1142/S1793042122501172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian variety over a finite field k with vertical bar k vertical bar = q = p(m). Let pi is an element of End(k)(A) denote the Ftobenius and let v = q pi(-1) denote Verschiebung. Suppose the Weil q-polynomial of A is irreducible. When End(k)(A) = Z[pi, v], we construct a matrix which describes the action of pi on the prime-to-p-torsion points of A. We employ this matrix in an algorithm that detects when p is an obstruction to the monogenicity of division fields of certain abelian varieties.
引用
收藏
页码:2299 / 2315
页数:17
相关论文
共 50 条
  • [31] Elliptic curves with abelian division fields
    Enrique González–Jiménez
    Álvaro Lozano-Robledo
    Mathematische Zeitschrift, 2016, 283 : 835 - 859
  • [32] Elliptic curves with abelian division fields
    Gonzalez-Jimenez, Enrique
    Lozano-Robledo, Alvaro
    MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) : 835 - 859
  • [33] Categories of abelian varieties over finite fields, I: Abelian varieties over Fp
    Centeleghe, Tommaso Giorgio
    Stix, Jakob
    ALGEBRA & NUMBER THEORY, 2015, 9 (01) : 225 - 265
  • [34] ON THE NON COMMUTATIVE IWASAWA MAIN CONJECTURE FOR ABELIAN VARIETIES OVER FUNCTION FIELDS
    Trihan, Fabien
    Vauclair, David
    DOCUMENTA MATHEMATICA, 2019, 24 : 473 - 522
  • [36] Isogenies of abelian varieties over finite fields
    Alice Silverberg
    Yuri G. Zarhin
    Designs, Codes and Cryptography, 2015, 77 : 427 - 439
  • [37] Modular Abelian Varieties Over Number Fields
    Guitart, Xavier
    Quer, Jordi
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (01): : 170 - 196
  • [38] Curves in abelian varieties over finite fields
    Bogomolov, F
    Tschinkel, Y
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (04) : 233 - 238
  • [39] On the rank of abelian varieties over function fields
    Amílcar Pacheco
    manuscripta mathematica, 2005, 118 : 361 - 381
  • [40] ON THE RANK OF ABELIAN VARIETIES OVER AMPLE FIELDS
    Fehm, Arno
    Petersen, Sebastian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (03) : 579 - 586