Frobenius finds non-monogenic division fields of abelian varieties

被引:1
|
作者
Smith, Hanson [1 ]
机构
[1] Univ Connecticut, Dept Math, 341 Mansfield Rd U1009, Storrs, CT 06269 USA
关键词
Frobenius morphism; monogenic; power integral basis; division field; torsion field; CHARACTERISTIC-POLYNOMIALS; ELLIPTIC-CURVES; TORSION POINTS; FINITE-FIELDS; DIMENSIONS; SURFACES; NUMBERS; RINGS;
D O I
10.1142/S1793042122501172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian variety over a finite field k with vertical bar k vertical bar = q = p(m). Let pi is an element of End(k)(A) denote the Ftobenius and let v = q pi(-1) denote Verschiebung. Suppose the Weil q-polynomial of A is irreducible. When End(k)(A) = Z[pi, v], we construct a matrix which describes the action of pi on the prime-to-p-torsion points of A. We employ this matrix in an algorithm that detects when p is an obstruction to the monogenicity of division fields of certain abelian varieties.
引用
收藏
页码:2299 / 2315
页数:17
相关论文
共 50 条
  • [21] General theory of polygenic or non-monogenic functions - The derivative congruence of circles
    Kasner, E
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1928, 14 : 75 - 82
  • [22] Frobenius's conjugation class of abelian varieties on a set of numbers
    Noot, Rutger
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 53 - 71
  • [23] Clinical Phenotypes and Outcomes in Monogenic Versus Non-monogenic Very Early Onset Inflammatory Bowel Disease
    Collen, Lauren, V
    Kim, David Y.
    Field, Michael
    Okoroafor, Ibeawuchi
    Saccocia, Gwen
    Whitcomb, Sydney Driscoll
    Green, Julia
    Dong, Michelle Dao
    Barends, Jared
    Carey, Bridget
    Weatherly, Madison E.
    Rockowitz, Shira
    Sliz, Piotr
    Liu, Enju
    Eran, Alal
    Grushkin-Lerner, Leslie
    Bousvaros, Athos
    Muise, Aleixo M.
    Klein, Christoph
    Mitsialis, Vanessa
    Ouahed, Jodie
    Snapper, Scott B.
    JOURNAL OF CROHNS & COLITIS, 2022, 16 (09): : 1380 - 1396
  • [24] Do we need the PFAPA syndrome in adults with non-monogenic periodic fevers?
    Fayand, Antoine
    Hentgen, Veronique
    Ducharme-Benard, Stephanie
    Quartier, Pierre
    Bader-Meunier, Brigitte
    Kone-Paut, Isabelle
    Grateau, Gilles
    Georgin-Lavialle, Sophie
    ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 (01)
  • [25] DIVISION POINTS ON SEMI-ABELIAN VARIETIES
    MCQUILLAN, M
    INVENTIONES MATHEMATICAE, 1995, 120 (01) : 143 - 159
  • [26] Abelian Function Fields on Jacobian Varieties
    Bernatska, Julia
    AXIOMS, 2025, 14 (02)
  • [28] ABELIAN FUNCTION FIELDS ON JACOBIAN VARIETIES
    Bernatska, Julia
    arXiv,
  • [30] Abelian varieties over cyclic fields
    Im, Bo-Hae
    Larsen, Michael
    AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (05) : 1195 - 1210