Frobenius finds non-monogenic division fields of abelian varieties

被引:1
|
作者
Smith, Hanson [1 ]
机构
[1] Univ Connecticut, Dept Math, 341 Mansfield Rd U1009, Storrs, CT 06269 USA
关键词
Frobenius morphism; monogenic; power integral basis; division field; torsion field; CHARACTERISTIC-POLYNOMIALS; ELLIPTIC-CURVES; TORSION POINTS; FINITE-FIELDS; DIMENSIONS; SURFACES; NUMBERS; RINGS;
D O I
10.1142/S1793042122501172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an abelian variety over a finite field k with vertical bar k vertical bar = q = p(m). Let pi is an element of End(k)(A) denote the Ftobenius and let v = q pi(-1) denote Verschiebung. Suppose the Weil q-polynomial of A is irreducible. When End(k)(A) = Z[pi, v], we construct a matrix which describes the action of pi on the prime-to-p-torsion points of A. We employ this matrix in an algorithm that detects when p is an obstruction to the monogenicity of division fields of certain abelian varieties.
引用
收藏
页码:2299 / 2315
页数:17
相关论文
共 50 条
  • [1] Non-monogenic division fields of elliptic curves
    Smith, Hanson
    JOURNAL OF NUMBER THEORY, 2021, 228 : 174 - 187
  • [2] Additive structure of non-monogenic simplest cubic fields
    Gil-Munoz, Daniel
    Tinkova, Magdalena
    RAMANUJAN JOURNAL, 2025, 66 (03):
  • [3] The genetics of non-monogenic IBD
    Jans, Deborah
    Cleynen, Isabelle
    HUMAN GENETICS, 2023, 142 (05) : 669 - 682
  • [4] The genetics of non-monogenic IBD
    Deborah Jans
    Isabelle Cleynen
    Human Genetics, 2023, 142 : 669 - 682
  • [6] On class numbers of division fields of abelian varieties
    Garnek, Jedrzej
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2019, 31 (01): : 227 - 242
  • [7] Semistable abelian varieties with small division fields
    Brumer, A
    Kramer, K
    GALOIS THEORY AND MODULAR FORMS, 2004, 11 : 13 - 37
  • [8] Infinite families of non-monogenic trinomials
    Lenny Jones
    Acta Scientiarum Mathematicarum, 2021, 87 : 95 - 105
  • [9] Counting abelian varieties over finite fields via Frobenius densities
    Achter, Jeffrey D.
    Altug, S. Ali
    Garcia, Luis
    Gordon, Julia
    Li, Wen -Wei
    Rued, Thomas
    ALGEBRA & NUMBER THEORY, 2023, 17 (07) : 1239 - 1280
  • [10] Frobenius Distributions of Low Dimensional Abelian Varieties Over Finite Fields
    Arango-Pineros, Santiago
    Bhamidipati, Deewang
    Sankar, Soumya
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (16) : 11989 - 12020