Critical downstream analysis steps for single-cell RNA sequencing data

被引:25
|
作者
Zhang, Zilong [2 ]
Cui, Feifei [2 ]
Lin, Chen [3 ]
Zhao, Lingling [4 ]
Wang, Chunyu [4 ]
Zou, Quan [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, 4 North Jianshe Rd, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[3] Xiamen Univ, Xiamen, Peoples R China
[4] Harbin Inst Technol, Harbin, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
single-cell RNA sequencing; clustering; trajectory inference; cell type annotation; integrating datasets; GENE-EXPRESSION; SEQ DATA; IDENTIFICATION; HETEROGENEITY; PACKAGE; FATE;
D O I
10.1093/bib/bbab105
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) has enabled us to study biological questions at the single-cell level. Currently, many analysis tools are available to better utilize these relatively noisy data. In this review, we summarize the most widely used methods for critical downstream analysis steps (i.e. clustering, trajectory inference, cell-type annotation and integrating datasets). The advantages and limitations are comprehensively discussed, and we provide suggestions for choosing proper methods in different situations. We hope this paper will be useful for scRNA-seq data analysts and bioinformatics tool developers.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [41] Improved downstream functional analysis of single-cell RNA-sequence data using DGAN
    Diksha Pandey
    Perumal P. Onkara
    Scientific Reports, 13
  • [42] Single-cell RNA Sequencing in Immunology
    Cao, Yirui
    Qiu, Yue
    Tu, Guowei
    Yang, Cheng
    CURRENT GENOMICS, 2020, 21 (08) : 564 - 575
  • [43] Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data
    Wang, Tianyu
    Li, Boyang
    Nelson, Craig E.
    Nabavi, Sheida
    BMC BIOINFORMATICS, 2019, 20 (1)
  • [44] Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data
    Tianyu Wang
    Boyang Li
    Craig E. Nelson
    Sheida Nabavi
    BMC Bioinformatics, 20
  • [45] Single-cell RNA sequencing in osteoarthritis
    Gu, Yuyuan
    Hu, Yan
    Zhang, Hao
    Wang, Sicheng
    Xu, Ke
    Su, Jiacan
    CELL PROLIFERATION, 2023, 56 (12)
  • [46] Differential analysis of binarized single-cell RNA sequencing data captures biological variation
    Bouland, Gerard A.
    Mahfouz, Ahmed
    Reinders, Marcel J. T.
    NAR GENOMICS AND BIOINFORMATICS, 2021, 3 (04)
  • [47] Topological Methods for Visualization and Analysis of High Dimensional Single-Cell RNA Sequencing Data
    Wang, Tongxin
    Johnson, Travis
    Zhang, Jie
    Huang, Kun
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2019, 2019, : 350 - 361
  • [48] Expression variation analysis for tumor heterogeneity in single-cell RNA-sequencing data
    Davis-Marcisak, Emily F.
    Orugunta, Pranay
    Stein-O'Brien, Genevieve
    Puram, Sidharth V.
    Torres, Evanthia Roussos
    Hopkins, Alexander
    Jaffee, Elizabeth M.
    Favorov, Alexander V.
    Afsari, Bahman
    Goff, Loyal A.
    Fertig, Elana J.
    CANCER RESEARCH, 2019, 79 (13)
  • [49] scParser: sparse representation learning for scalable single-cell RNA sequencing data analysis
    Zhao, Kai
    So, Hon-Cheong
    Lin, Zhixiang
    GENOME BIOLOGY, 2024, 25 (01):
  • [50] Accounting for technical noise in differential expression analysis of single-cell RNA sequencing data
    Jia, Cheng
    Hu, Yu
    Kelly, Derek
    Kim, Junhyong
    Li, Mingyao
    Zhang, Nancy R.
    NUCLEIC ACIDS RESEARCH, 2017, 45 (19) : 10978 - 10988