Critical downstream analysis steps for single-cell RNA sequencing data

被引:25
|
作者
Zhang, Zilong [2 ]
Cui, Feifei [2 ]
Lin, Chen [3 ]
Zhao, Lingling [4 ]
Wang, Chunyu [4 ]
Zou, Quan [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, 4 North Jianshe Rd, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[3] Xiamen Univ, Xiamen, Peoples R China
[4] Harbin Inst Technol, Harbin, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
single-cell RNA sequencing; clustering; trajectory inference; cell type annotation; integrating datasets; GENE-EXPRESSION; SEQ DATA; IDENTIFICATION; HETEROGENEITY; PACKAGE; FATE;
D O I
10.1093/bib/bbab105
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) has enabled us to study biological questions at the single-cell level. Currently, many analysis tools are available to better utilize these relatively noisy data. In this review, we summarize the most widely used methods for critical downstream analysis steps (i.e. clustering, trajectory inference, cell-type annotation and integrating datasets). The advantages and limitations are comprehensively discussed, and we provide suggestions for choosing proper methods in different situations. We hope this paper will be useful for scRNA-seq data analysts and bioinformatics tool developers.
引用
下载
收藏
页数:11
相关论文
共 50 条
  • [31] Comparative Analysis of Single-Cell RNA Sequencing Methods
    Ziegenhain, Christoph
    Vieth, Beate
    Parekh, Swati
    Reinius, Bjorn
    Guillaumet-Adkins, Amy
    Smets, Martha
    Leonhardt, Heinrich
    Heyn, Holger
    Hellmann, Ines
    Enard, Wolfgang
    MOLECULAR CELL, 2017, 65 (04) : 631 - +
  • [32] MISC: missing imputation for single-cell RNA sequencing data
    Yang, Mary Qu
    Weissman, Sherman M.
    Yang, William
    Zhang, Jialing
    Canaann, Allon
    Guan, Renchu
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [33] SNV identification from single-cell RNA sequencing data
    Schnepp, Patricia M.
    Chen, Mengjie
    Keller, Evan T.
    Zhou, Xiang
    HUMAN MOLECULAR GENETICS, 2019, 28 (21) : 3569 - 3583
  • [34] The effect of methanol fixation on single-cell RNA sequencing data
    Wang, Xinlei
    Yu, Lei
    Wu, Angela Ruohao
    BMC GENOMICS, 2021, 22 (01)
  • [35] Normalizing single-cell RNA sequencing data: Challenges and opportunities
    Vallejos C.A.
    Risso D.
    Scialdone A.
    Dudoit S.
    Marioni J.C.
    Nature Methods, 2017, 14 (6) : 565 - 571
  • [36] The shaky foundations of simulating single-cell RNA sequencing data
    Crowell, Helena L.
    Leonardo, Sarah X. Morillo X.
    Soneson, Charlotte
    Robinson, Mark D.
    GENOME BIOLOGY, 2023, 24 (01)
  • [37] SCRIP: an accurate simulator for single-cell RNA sequencing data
    Qin, Fei
    Luo, Xizhi
    Xiao, Feifei
    Cai, Guoshuai
    BIOINFORMATICS, 2022, 38 (05) : 1304 - 1311
  • [38] Normalizing single-cell RNA sequencing data: challenges and opportunities
    Vallejos, Catalina A.
    Risso, Davide
    Scialdone, Antonio
    Dudoit, Sandrine
    Marioni, John C.
    NATURE METHODS, 2017, 14 (06) : 565 - 571
  • [39] Heterogeneity Analysis of Glioblastoma Tumor Cell Population Based on Single-Cell Rna Sequencing Data Analysis
    Yang, Jason Huajue
    Cheng, Eena
    2023 13TH INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS, ICBBB 2023, 2023, : 23 - 33
  • [40] Improved downstream functional analysis of single-cell RNA-sequence data using DGAN
    Pandey, Diksha
    Onkara, Perumal P. P.
    SCIENTIFIC REPORTS, 2023, 13 (01)