Critical downstream analysis steps for single-cell RNA sequencing data

被引:25
|
作者
Zhang, Zilong [2 ]
Cui, Feifei [2 ]
Lin, Chen [3 ]
Zhao, Lingling [4 ]
Wang, Chunyu [4 ]
Zou, Quan [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, 4 North Jianshe Rd, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[3] Xiamen Univ, Xiamen, Peoples R China
[4] Harbin Inst Technol, Harbin, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
single-cell RNA sequencing; clustering; trajectory inference; cell type annotation; integrating datasets; GENE-EXPRESSION; SEQ DATA; IDENTIFICATION; HETEROGENEITY; PACKAGE; FATE;
D O I
10.1093/bib/bbab105
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell RNA sequencing (scRNA-seq) has enabled us to study biological questions at the single-cell level. Currently, many analysis tools are available to better utilize these relatively noisy data. In this review, we summarize the most widely used methods for critical downstream analysis steps (i.e. clustering, trajectory inference, cell-type annotation and integrating datasets). The advantages and limitations are comprehensively discussed, and we provide suggestions for choosing proper methods in different situations. We hope this paper will be useful for scRNA-seq data analysts and bioinformatics tool developers.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A practical handbook on single-cell RNA sequencing data quality control and downstream analysis
    Kim, Gyeong Dae
    Lim, Chaemin
    Park, Jihwan
    [J]. MOLECULES AND CELLS, 2024, 47 (09)
  • [2] Complex Analysis of Single-Cell RNA Sequencing Data
    Anna A. Khozyainova
    Anna A. Valyaeva
    Mikhail S. Arbatsky
    Sergey V. Isaev
    Pavel S. Iamshchikov
    Egor V. Volchkov
    Marat S. Sabirov
    Viktoria R. Zainullina
    Vadim I. Chechekhin
    Rostislav S. Vorobev
    Maxim E. Menyailo
    Pyotr A. Tyurin-Kuzmin
    Evgeny V. Denisov
    [J]. Biochemistry (Moscow), 2023, 88 : 231 - 252
  • [3] Complex Analysis of Single-Cell RNA Sequencing Data
    Khozyainova, Anna A. A.
    Valyaeva, Anna A. A.
    Arbatsky, Mikhail S. S.
    Isaev, Sergey V. V.
    Iamshchikov, Pavel S. S.
    Volchkov, Egor V. V.
    Sabirov, Marat S. S.
    Zainullina, Viktoria R. R.
    Chechekhin, Vadim I. I.
    Vorobev, Rostislav S. S.
    Menyailo, Maxim E. E.
    Tyurin-Kuzmin, Pyotr A. A.
    Denisov, Evgeny V. V.
    [J]. BIOCHEMISTRY-MOSCOW, 2023, 88 (02) : 231 - 252
  • [4] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    [J]. Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244
  • [5] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244
  • [6] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    [J]. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [7] Analysis of single-cell RNA sequencing data based on autoencoders
    Andrea Tangherloni
    Federico Ricciuti
    Daniela Besozzi
    Pietro Liò
    Ana Cvejic
    [J]. BMC Bioinformatics, 22
  • [8] Analysis of single-cell RNA sequencing data based on autoencoders
    Tangherloni, Andrea
    Ricciuti, Federico
    Besozzi, Daniela
    Lio, Pietro
    Cvejic, Ana
    [J]. BMC BIOINFORMATICS, 2021, 22 (01)
  • [9] Evaluation of single-cell classifiers for single-cell RNA sequencing data sets
    Zhao, Xinlei
    Wu, Shuang
    Fang, Nan
    Sun, Xiao
    Fan, Jue
    [J]. BRIEFINGS IN BIOINFORMATICS, 2020, 21 (05) : 1581 - 1595
  • [10] Differential gene expression analysis in single-cell RNA sequencing data
    Wang, Tianyu
    Nabavi, Sheida
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 202 - 207