Asymptotic analysis of high frequency modes in thin rods

被引:7
|
作者
Irago, H [1 ]
Kerdid, N
Viano, JM
机构
[1] Univ Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15706, Spain
[2] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
关键词
D O I
10.1016/S0764-4442(98)80238-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we show that a class of high frequency modes of the three-dimensional linearized elasticity system in a thin rod and their associated eigenfunctions converge, as the thickness of the rods goes to zero, and the limit model is a coupled one-dimensional problem giving the classical equations for torsion and stretching vibrations. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1255 / 1260
页数:6
相关论文
共 50 条
  • [31] A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis
    Viãno, J.M.
    Figueiredo, J.
    Ribeiro, C.
    Rodríguez-Arós, À.
    Zeitschrift fur Angewandte Mathematik und Physik, 2014, 66 (03): : 1207 - 1232
  • [32] Asymptotic analysis of wall modes in a flexible tube
    V. Kumaran
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 4 : 519 - 527
  • [33] A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis
    J. M. Viaño
    J. Figueiredo
    C. Ribeiro
    Á. Rodríguez-Arós
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1207 - 1232
  • [34] Asymptotic analysis of wall modes in a flexible tube
    Kumaran, V
    EUROPEAN PHYSICAL JOURNAL B, 1998, 4 (04): : 519 - 527
  • [35] Asymptotic analysis of stretching modes for a folded plate
    Kerdid, Nabil
    AIMS MATHEMATICS, 2023, 8 (10): : 23974 - 23988
  • [36] ASYMPTOTIC HIGH-FREQUENCY METHODS
    KOUYOUMJ.RG
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1965, 53 (08): : 864 - &
  • [37] COMPLETE ASYMPTOTIC EXPANSIONS FOR EIGENVALUES OF DIRICHLET LAPLACIAN IN THIN THREE-DIMENSIONAL RODS
    Borisov, Denis
    Cardone, Giuseppe
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (03) : 887 - 908
  • [38] ANALYSIS OF THE HIGH-FREQUENCY FLEXURAL MODES OF A RECTANGULAR ELASTIC PLATE
    RUBTSOVA, IG
    SOVIET APPLIED MECHANICS, 1982, 18 (02): : 164 - 168
  • [39] Analysis of High-Frequency Vibrational Modes Through Laser Pulses
    Lacidogna, G.
    Invernizzi, S.
    Montrucchio, B.
    Borla, O.
    Carpinteri, A.
    RESIDUAL STRESS, THERMOMECHANICS & INFRARED IMAGING, HYBRID TECHNIQUES AND INVERSE PROBLEMS, VOL 9, 2016, : 93 - 104
  • [40] ASYMPTOTIC DESCRIPTION OF LOCALIZED LATTICE MODES AND LOW-FREQUENCY RESONANCES
    KRUMHANSL, JA
    MATTHEW, JAD
    PHYSICAL REVIEW, 1968, 166 (03): : 856 - +