A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis

被引:0
|
作者
Viãno, J.M. [1 ]
Figueiredo, J. [2 ]
Ribeiro, C. [2 ]
Rodríguez-Arós, À. [3 ]
机构
[1] Departamento de Matemática Aplicada, Univ. de Santiago de Compostela, Santiago de Compostela, Spain
[2] Departamento de Matemática e Aplições and Centro de Matemática, Univ. do Minho, Guimarães, Portugal
[3] Departamento de Métodos Matemáticos e Representación, Univ. de A Coruña, A Coruña, Spain
来源
关键词
Change of variables - One-dimensional model - Passage to the limit - Piezoelectric cantilevers - Piezoelectric rods - Rods - Strong convergence - Three-dimensional problems;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper was to obtain a new model for the bending-stretching of an anisotropic heterogeneous linearly piezoelectric cantilever rod when the electric potential is applied on the both ends. The process is assumed to be static, and the piezoelectric material is monoclinic of class 2. To derive the model, we start with the corresponding threedimensional problem, introduce a change of variable together with a scaling of the unknowns and then we use a passage to the limit procedure, based on arguments of asymptotic analysis taking the diameter of the cross-section as small parameter. Finally, we prove a result of strong convergence that justifies both the method and the one-dimensional model obtained. One of the most relevant features of this one-dimensional model is that the stretching is coupled with the electric potential, while the bendings are not. © 2014 Springer Basel.
引用
收藏
页码:1207 / 1232
相关论文
共 50 条
  • [1] A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis
    Viano, J. M.
    Figueiredo, J.
    Ribeiro, C.
    Rodriguez-Aros, A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (03): : 1207 - 1232
  • [2] A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis
    J. M. Viaño
    J. Figueiredo
    C. Ribeiro
    Á. Rodríguez-Arós
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1207 - 1232
  • [3] A bending-stretching model in adhesive contact for elastic rods obtained by using asymptotic methods
    Rodriguez-Aros, A.
    Viano, J. M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 : 632 - 644
  • [4] Asymptotic analysis of torsional and stretching modes of thin rods
    Irago, H
    Kerdid, N
    Viaño, JM
    QUARTERLY OF APPLIED MATHEMATICS, 2000, 58 (03) : 495 - 510
  • [5] A high order model for piezoelectric rods: An asymptotic approach
    Viano, J. M.
    Ribeiro, C.
    Figueiredo, J.
    Rodriguez-Aros, A.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 81 : 294 - 310
  • [6] Asymptotic analysis of 3-D thin piezoelectric rods
    Leugering, Guenter
    Nazarov, Sergei A.
    Slutskij, Andrey S.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (06): : 529 - 550
  • [7] Asymptotic modeling of linearly piezoelectric slender rods
    Weller, Thibaut
    Licht, Christian
    COMPTES RENDUS MECANIQUE, 2008, 336 (07): : 572 - 577
  • [8] DYNAMIC EQUATIONS FOR THE FINITE ELASTIC BENDING, TORSION, AND STRETCHING OF RODS
    PARKER, DF
    QUARTERLY OF APPLIED MATHEMATICS, 1987, 45 (03) : 533 - 548
  • [9] A new generalized timoshenko model for piezoelectric cylindrical rods by using the Variational Asymptotic Method
    Zhong, Yi-Feng
    Zhou, Xiao-Ping
    Zhang, Liang-Liang
    Gongcheng Lixue/Engineering Mechanics, 2014, 31 (10): : 14 - 20
  • [10] Piezoelectric excitation of strain, bending and torsional vibrations in quartz rods
    Giebe, E.
    Scheibe, A.
    ZEITSCHRIFT FUR PHYSIK, 1928, 46 (9-10): : 607 - 652