Bilinear fractal interpolation and box dimension

被引:72
|
作者
Barnsley, Michael F. [1 ]
Massopust, Peter R. [2 ,3 ]
机构
[1] Australian Natl Univ, Inst Math Sci, Canberra, ACT, Australia
[2] Tech Univ Munich, Res Unit M6, Ctr Math, D-85747 Garching, Germany
[3] Helmholtz Zentrum Munchen, D-8764 Neuherberg, Germany
关键词
Iterated function system (IFS); Attractor; Fractal interpolation; Read-Bajraktarevic operator; Bilinear mapping; Bilinear IFS; Box counting dimension;
D O I
10.1016/j.jat.2014.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of general iterated function systems (IFSs), we introduce bilinear fractal interpolants as the fixed points of certain Read Bajraktarevic operators. By exhibiting a generalized "taxi-cab" metric, we show that the graph of a bilinear fractal interpolant is the attractor of an underlying contractive bilinear IFS. We present an explicit formula for the box-counting dimension of the graph of a bilinear fractal interpolant in the case of equally spaced data points. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:362 / 378
页数:17
相关论文
共 50 条
  • [31] Fractal Analysis of Proteins Based on Box Dimension
    Peng Xin
    Zhang Yuwei
    Qi Wei
    Su Rongxin
    Wu Shaomin
    He Zhimin
    [J]. ACTA CHIMICA SINICA, 2010, 68 (11) : 1143 - 1147
  • [32] Box-counting dimension and analytic properties of hidden variable fractal interpolation functions with function contractivity factors
    Yun, CholHui
    Ri, MiGyong
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134
  • [33] Explicit relation between Fourier transform and fractal dimension of fractal interpolation functions
    A. Agathiyan
    Nur Aisyah Abdul Fataf
    A. Gowrisankar
    [J]. The European Physical Journal Special Topics, 2023, 232 : 1077 - 1091
  • [34] Explicit relation between Fourier transform and fractal dimension of fractal interpolation functions
    Agathiyan, A.
    Fataf, Nur Aisyah Abdul
    Gowrisankar, A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1077 - 1091
  • [35] An analysis of COVID-19 spread based on fractal interpolation and fractal dimension
    Pacurar, Cristina-Maria
    Necula, Bogdan-Radu
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 139
  • [36] CONSTRUCTION OF RECURRENT FRACTAL INTERPOLATION SURFACES WITH FUNCTION SCALING FACTORS AND ESTIMATION OF BOX-COUNTING DIMENSION ON RECTANGULAR GRIDS
    Yun, Chol-Hui
    Choi, Hui-Chol
    Hyong-Chol, O.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2015, 23 (04)
  • [37] Fractal properties of refined box dimension on functional graph
    Dai, MF
    Tian, LX
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (04) : 1371 - 1379
  • [38] Box Dimension and Fractional Integrals of Multivariate α-Fractal Functions
    Agrawal, Vishal
    Pandey, Megha
    Som, Tanmoy
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [39] The box dimension for researching similarity in fractal image coding
    Song, CH
    [J]. 2002 6TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I AND II, 2002, : 889 - 891
  • [40] A REVISIT TO α-FRACTAL FUNCTION AND BOX DIMENSION OF ITS GRAPH
    Verma, S.
    Viswanathan, P.
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (06)