An analysis of COVID-19 spread based on fractal interpolation and fractal dimension

被引:38
|
作者
Pacurar, Cristina-Maria [1 ]
Necula, Bogdan-Radu [2 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Informat, Blvd Eroilor 29, Brasov 500036, Romania
[2] Transilvania Univ Brasov, Fac Med, Blvd Eroilor 29, Brasov 500036, Romania
关键词
Covid-19; Epidemic curve; Epidemic spreading; Fractal interpolation; Box-dimension;
D O I
10.1016/j.chaos.2020.110073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper proposes a reconstruction of the epidemic curves from the fractal interpolation point of view. Looking at the epidemic curves as fractal structures might be an efficient way to retrieve missing pieces of information due to insufficient testing and predict the evolution of the disease. A fractal approach of the epidemic curve can contribute to the assessment and modeling of other epidemics. On the other hand, we have considered the spread of the epidemic in countries like Romania, Italy, Spain, and Germany and analyzed the spread of the disease in those countries based on their fractal dimension. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A study of COVID-19 spread through zipper fractal interpolation
    Sneha
    Katiyar, Kuldip
    [J]. INTERNATIONAL JOURNAL OF APPLIED NONLINEAR SCIENCE, 2023, 4 (01) : 1 - 11
  • [2] Fractal signatures of the COVID-19 spread
    Abbasi, M.
    Bollini, A. L.
    Castillo, J. L. B.
    Deppman, A.
    Guidio, J. P.
    Matuoka, P. T.
    Meirelles, A. D.
    Policarpo, J. M. P.
    Ramos, A. . A. . G. F.
    Simionatto, S.
    Varona, A. R. P.
    Andrade-, E., II
    Panjeh, H.
    Trevisan, L. A.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 140
  • [3] Fractal dimension based geographical clustering of COVID-19 time series data
    Natalia, Yessika Adelwin
    Faes, Christel
    Neyens, Thomas
    Chys, Pieter
    Hammami, Naima
    Molenberghs, Geert
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [4] Fractal dimension based geographical clustering of COVID-19 time series data
    Yessika Adelwin Natalia
    Christel Faes
    Thomas Neyens
    Pieter Chys
    Naïma Hammami
    Geert Molenberghs
    [J]. Scientific Reports, 13
  • [5] Estimating fractal dimension with fractal interpolation function models
    Penn, AI
    Loew, MH
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) : 930 - 937
  • [6] Numerical analysis of COVID-19 model with constant fractional order and variable fractal dimension
    Alkahtani, Badr Saad T.
    Jain, Sonal
    [J]. RESULTS IN PHYSICS, 2021, 20
  • [7] Approximation by the linear fractal interpolation functions with the same fractal dimension
    Liang, Y. S.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1071 - 1076
  • [8] Approximation by the linear fractal interpolation functions with the same fractal dimension
    Y. S. Liang
    [J]. The European Physical Journal Special Topics, 2023, 232 : 1071 - 1076
  • [9] Fractal analysis of market (in)efficiency during the COVID-19
    Frezza, Massimiliano
    Bianchi, Sergio
    Pianese, Augusto
    [J]. FINANCE RESEARCH LETTERS, 2021, 38
  • [10] Fractal analysis of market (in)efficiency during the COVID-19
    Frezza, Massimiliano
    Bianchi, Sergio
    Pianese, Augusto
    [J]. FINANCE RESEARCH LETTERS, 2021, 38