HP FEM for reaction-diffusion equations I: Robust exponential convergence

被引:50
|
作者
Melenk, JM [1 ]
Schwab, C [1 ]
机构
[1] ETH Zurich, Seminar Angew Math, CH-8092 Zurich, Switzerland
关键词
hp finite element method; spectral element method; boundary layer; singularly perturbed problem; robust method;
D O I
10.1137/S0036142997317602
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A singularly perturbed reaction-diffusion equation in two dimensions is considered. We assume analyticity of the input data, i.e., the boundary of the domain is an analytic curve and the right-hand side is analytic. We show that the hp version of the finite element method leads to robust exponential convergence provided that one layer of needle elements of width O(p epsilon) is inserted near the domain boundary, that is, the rate of convergence is O(exp(-bp)) and independent of the perturbation parameter epsilon. Additionally, we show that the use of numerical quadrature for the evaluation of the stiffness matrix and the load vector retains the exponential rate of convergence. In particular, the spectral element method based on the use of a Gauss-Lobatto quadrature rule with (p + 1) x (p + 1) points yields robust exponential convergence.
引用
收藏
页码:1520 / 1557
页数:38
相关论文
共 50 条
  • [1] Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion equations
    Melenk, J. M.
    Xenophontos, C.
    [J]. CALCOLO, 2016, 53 (01) : 105 - 132
  • [2] Robust exponential convergence of hp FEM for singularly perturbed reaction-diffusion systems with multiple scales
    Melenk, J. M.
    Xenophontos, C.
    Oberbroeckling, L.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 609 - 628
  • [3] EXPONENTIAL CONVERGENCE OF A GENERALIZED FEM FOR HETEROGENEOUS REACTION-DIFFUSION EQUATIONS
    Ma, Chupeng
    Melenk, J. M.
    [J]. MULTISCALE MODELING & SIMULATION, 2024, 22 (01): : 256 - 282
  • [4] hp-FEM for reaction-diffusion equations. II: robust exponential convergence for multiple length scales in corner domains
    Banjai, Lehel
    Melenk, Jens M.
    Schwab, Christoph
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (06) : 3282 - 3325
  • [5] Robust exponential convergence of hp-FEM in balanced norms for singularly perturbed reaction-diffusion problems: Corner domains
    Faustmann, M.
    Melenk, J. M.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (07) : 1576 - 1589
  • [6] Adaptive FEM for reaction-diffusion equations
    Lang, J
    [J]. APPLIED NUMERICAL MATHEMATICS, 1998, 26 (1-2) : 105 - 116
  • [7] Exponential convergence of hp FEM for spectral fractional diffusion in polygons
    Lehel Banjai
    Jens M. Melenk
    Christoph Schwab
    [J]. Numerische Mathematik, 2023, 153 : 1 - 47
  • [8] Exponential convergence of hp FEM for spectral fractional diffusion in polygons
    Banjai, Lehel
    Melenk, Jens M.
    Schwab, Christoph
    [J]. NUMERISCHE MATHEMATIK, 2023, 153 (01) : 1 - 47
  • [9] Robust exponential convergence of the hp discontinuous Galerkin FEM for convection-diffusion problems in one space dimension
    Wihler, T.P.
    Schwab, Ch.
    [J]. East-West Journal of Numerical Mathematics, 2000, 8 (01): : 57 - 70
  • [10] Pullback Exponential Attractors for Nonautonomous Reaction-Diffusion Equations
    Yan, Xingjie
    Qi, Wei
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):