Exponential convergence of hp FEM for spectral fractional diffusion in polygons

被引:0
|
作者
Lehel Banjai
Jens M. Melenk
Christoph Schwab
机构
[1] Heriot-Watt University,Maxwell Institute for Mathematical Sciences, School of Mathematical & Computer Sciences
[2] Technische Universität Wien,Institut für Analysis und Scientific Computing
[3] ETH Zürich,Seminar for Applied Mathematics
来源
Numerische Mathematik | 2023年 / 153卷
关键词
Fractional diffusion; Nonlocal operators; Dunford-Taylor calculus; Anisotropic ; –refinement; Geometric corner refinement; Exponential convergence; -widths; 26A33; 65N12; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
For the spectral fractional diffusion operator of order 2s, s∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s \in (0,1)$$\end{document}, in bounded, curvilinear polygonal domains Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega \subset {{\mathbb {R}}}^2$$\end{document} we prove exponential convergence of two classes of hp discretizations under the assumption of analytic data (coefficients and source terms, without any boundary compatibility), in the natural fractional Sobolev norm Hs(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^s(\varOmega )$$\end{document}. The first hp discretization is based on writing the solution as a co-normal derivative of a 2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2+1$$\end{document}-dimensional local, linear elliptic boundary value problem, to which an hp-FE discretization is applied. A diagonalization in the extended variable reduces the numerical approximation of the inverse of the spectral fractional diffusion operator to the numerical approximation of a system of local, decoupled, second order reaction-diffusion equations inΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}. Leveraging results on robust exponential convergence of hp-FEM for second order, linear reaction diffusion boundary value problems in Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}, exponential convergence rates for solutions u∈Hs(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u\in {\mathbb {H}}^s(\varOmega )$$\end{document} of Lsu=f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^s u = f$$\end{document} follow. Key ingredient in this hp-FEM are boundary fitted meshes with geometric mesh refinement towards∂Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \varOmega $$\end{document}. The second discretization is based on exponentially convergent numerical sinc quadrature approximations of the Balakrishnan integral representation of L-s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}^{-s}$$\end{document} combined with hp-FE discretizations of a decoupled system of local, linear, singularly perturbed reaction-diffusion equations inΩ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega $$\end{document}. The present analysis for either approach extends to (polygonal subsets M~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{\mathcal {M}}}$$\end{document} of) analytic, compact 2-manifolds M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document}, parametrized by a global, analytic chart χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} with polygonal Euclidean parameter domain Ω⊂R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega \subset {{\mathbb {R}}}^2$$\end{document}. Numerical experiments for model problems in nonconvex polygonal domains and with incompatible data confirm the theoretical results. Exponentially small bounds on Kolmogorov n-widths of solution sets for spectral fractional diffusion in curvilinear polygons and for analytic source terms are deduced.
引用
收藏
页码:1 / 47
页数:46
相关论文
共 50 条
  • [1] Exponential convergence of hp FEM for spectral fractional diffusion in polygons
    Banjai, Lehel
    Melenk, Jens M.
    Schwab, Christoph
    [J]. NUMERISCHE MATHEMATIK, 2023, 153 (01) : 1 - 47
  • [2] EXPONENTIAL CONVERGENCE OF hp-FEM FOR THE INTEGRAL FRACTIONAL LAPLACIAN IN POLYGONS
    Faustmann, Markus
    Marcati, Carlo
    Melenk, Jens Markus
    Schwab, Christoph
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (06) : 2601 - 2622
  • [3] HP FEM for reaction-diffusion equations I: Robust exponential convergence
    Melenk, JM
    Schwab, C
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (04) : 1520 - 1557
  • [4] Exponential Convergence and Computational Efficiency of BURA-SD Method for Fractional Diffusion Equations in Polygons
    Margenov, Svetozar
    [J]. MATHEMATICS, 2024, 12 (14)
  • [5] Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons
    Schötzau, D
    Wihler, TP
    [J]. NUMERISCHE MATHEMATIK, 2003, 96 (02) : 339 - 361
  • [6] Exponential convergence of mixed hp-DGFEM for Stokes flow in polygons
    Dominik Schötzau
    Thomas P. Wihler
    [J]. Numerische Mathematik, 2003, 96 : 339 - 361
  • [7] Tensor FEM for Spectral Fractional Diffusion
    Banjai, Lehel
    Melenk, Jens M.
    Nochetto, Ricardo H.
    Otarola, Enrique
    Salgado, Abner J.
    Schwab, Christoph
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (04) : 901 - 962
  • [8] Tensor FEM for Spectral Fractional Diffusion
    Lehel Banjai
    Jens M. Melenk
    Ricardo H. Nochetto
    Enrique Otárola
    Abner J. Salgado
    Christoph Schwab
    [J]. Foundations of Computational Mathematics, 2019, 19 : 901 - 962
  • [9] Robust exponential convergence of hp FEM for singularly perturbed reaction-diffusion systems with multiple scales
    Melenk, J. M.
    Xenophontos, C.
    Oberbroeckling, L.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (02) : 609 - 628
  • [10] Exponential convergence of the hp-DGFEM for diffusion problems
    Wihler, TP
    Frauenfelder, P
    Schwab, C
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (01) : 183 - 205