hp-FEM for reaction-diffusion equations. II: robust exponential convergence for multiple length scales in corner domains

被引:3
|
作者
Banjai, Lehel [1 ]
Melenk, Jens M. [2 ]
Schwab, Christoph [3 ]
机构
[1] Heriot Watt Univ, Maxwell Inst Math Sci, Sch Math & Comp Sci, Edinburgh EH14 4AS, Scotland
[2] Tech Univ Wien, Inst Anal & Sci Comp, A-1040 Vienna, Austria
[3] Swiss Fed Inst Technol, ETH Zentrum, Seminar Appl Math, HG G57-1, CH-8092 Zurich, Switzerland
基金
奥地利科学基金会; 瑞士国家科学基金会;
关键词
anisotropic hp-refinement; geometric corner refinement; exponential convergence; FINITE-ELEMENT-METHOD; APPROXIMATION;
D O I
10.1093/imanum/drac070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In bounded, polygonal domains omega subset of R-2 with Lipschitz boundary & part;omega consisting of a finite number of Jordan curves admitting analytic parametrizations, we analyze hp-FEM discretizations of linear, second-order, singularly perturbed reaction-diffusion equations on so-called geometric boundary layer meshes. We prove, under suitable analyticity assumptions on the data, that these hp-FEM afford exponential convergence in the natural "energy' norm of the problem, as long as the geometric boundary layer mesh can resolve the smallest length scale present in the problem. Numerical experiments confirm the robust exponential convergence of the proposed hp-FEM.
引用
收藏
页码:3282 / 3325
页数:44
相关论文
共 19 条