Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances

被引:0
|
作者
Bansal, Somil [1 ]
Chen, Mo [1 ]
Herbert, Sylvia [1 ]
Tomlin, Claire J. [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
GAMES; SETS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hamilton-Jacobi (HJ) reachability analysis is an important formal verification method for guaranteeing performance and safety properties of dynamical systems; it has been applied to many small-scale systems in the past decade. Its advantages include compatibility with general nonlinear system dynamics, formal treatment of bounded disturbances, and the availability of well-developed numerical tools. The main challenge is addressing its exponential computational complexity with respect to the number of state variables. In this tutorial, we present an overview of basic HJ reachability theory and provide instructions for using the most recent numerical tools, including an efficient GPU-parallelized implementation of a Level Set Toolbox for computing reachable sets. In addition, we review some of the current work in high-dimensional HJ reachability to show how the dimensionality challenge can be alleviated via various general theoretical and application-specific insights.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [42] An extension of the Hamilton-Jacobi method
    Kozlov, V. V.
    [J]. DOKLADY MATHEMATICS, 2012, 85 (02) : 301 - 303
  • [43] Relaxation of Hamilton-Jacobi equations
    Ishii, H
    Loreti, P
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) : 265 - 304
  • [44] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136
  • [45] Multitime Hamilton-Jacobi Theory
    Udriste, Constantin
    Matei, Laura
    Duca, Iulian
    [J]. ISTASC '09: PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS THEORY AND SCIENTIFIC COMPUTATION, 2009, : 129 - +
  • [46] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [47] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    [J]. Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [48] CONTINGENT HAMILTON-JACOBI EQUATION
    FRANKOWSKA, H
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (11): : 295 - 298
  • [49] An extension of the Hamilton-Jacobi method
    V. V. Kozlov
    [J]. Doklady Mathematics, 2012, 85 : 301 - 303
  • [50] Incompleteness of the Hamilton-Jacobi theory
    Lemos, Nivaldo A.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2014, 82 (09) : 848 - 852