Quasi-Monte Carlo integration;
Digital net;
Worst case error;
Walsh coefficients;
Infinitely differentiable functions;
POINT SETS;
MULTIVARIATE INTEGRATION;
DIGITAL NETS;
RULES;
WAFOM;
D O I:
10.1016/j.cam.2017.08.010
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we consider Quasi-Monte Carlo (QMC) worst case error of weighted smooth function classes in C-infinity [0, 1](s) ns by a digital net over F-2. We show that the ratio of the worst case error to the QMC integration error of an exponential function is bounded above and below by constants. This result provides us with a simple interpretation that a digital net with small QMC integration error for an exponential function also gives the small integration error for any function in this function space. (C) 2017 Elsevier B.V. All rights reserved.
机构:
Institute of Mathematics with Computing Center, Ufa Federal Research Centre of the Russian Academy of Science, Ufa
Bashkir State University, UfaInstitute of Mathematics with Computing Center, Ufa Federal Research Centre of the Russian Academy of Science, Ufa
机构:
Shanghai Univ E Inst, Div Sci Computat, 100 Guilin Rd, Shanghai 200234, Peoples R ChinaShanghai Univ E Inst, Div Sci Computat, 100 Guilin Rd, Shanghai 200234, Peoples R China
Yue, Rong-Xian
Hickernell, Fred J.
论文数: 0引用数: 0
h-index: 0
机构:Shanghai Univ E Inst, Div Sci Computat, 100 Guilin Rd, Shanghai 200234, Peoples R China
机构:
Johannes Kepler Univ Linz, Inst Finanzmath, A-4040 Linz, AustriaJohannes Kepler Univ Linz, Inst Finanzmath, A-4040 Linz, Austria
Pillichshammer, Friedrich
Wozniakowski, Henryk
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Comp Sci, New York, NY 10027 USA
Univ Warsaw, Inst Appl Math, PL-02097 Warsaw, PolandJohannes Kepler Univ Linz, Inst Finanzmath, A-4040 Linz, Austria
机构:
Institute of Mathematics with Computer Center, Ufa Scientific Center of the Russian Academy of Sciences, UfaInstitute of Mathematics with Computer Center, Ufa Scientific Center of the Russian Academy of Sciences, Ufa