Approximation of Quasi-Monte Carlo worst case error in weighted spaces of infinitely times smooth functions

被引:1
|
作者
Matsumoto, Makoto [1 ]
Ohori, Ryuichi [2 ]
Yoshiki, Takehito [3 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Hiroshima 7398526, Japan
[2] Fujitsu Labs Ltd, Kawasaki, Kanagawa 2118588, Japan
[3] Kyoto Univ, Grad Sch Informat, Dept Appl Math & Phys, Kyoto 6068561, Japan
关键词
Quasi-Monte Carlo integration; Digital net; Worst case error; Walsh coefficients; Infinitely differentiable functions; POINT SETS; MULTIVARIATE INTEGRATION; DIGITAL NETS; RULES; WAFOM;
D O I
10.1016/j.cam.2017.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider Quasi-Monte Carlo (QMC) worst case error of weighted smooth function classes in C-infinity [0, 1](s) ns by a digital net over F-2. We show that the ratio of the worst case error to the QMC integration error of an exponential function is bounded above and below by constants. This result provides us with a simple interpretation that a digital net with small QMC integration error for an exponential function also gives the small integration error for any function in this function space. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 164
页数:10
相关论文
共 50 条
  • [31] On Bounding and Approximating Functions of Multiple Expectations Using Quasi-Monte Carlo
    Sorokin, Aleksei G.
    Rathinavel, Jagadeeswaran
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, MCQMC 2022, 2024, 460 : 583 - 599
  • [32] Quasi-Monte Carlo integration of characteristic functions and the rejection sampling method
    Wang, XQ
    COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) : 16 - 26
  • [33] Improving p-value approximation and level accuracy of Monte Carlo tests by quasi-Monte Carlo methods
    Chiu, Sung Nok
    Liu, Kwong Ip
    Communications in Statistics: Simulation and Computation, 2020, 51 (03) : 1272 - 1288
  • [34] Quasi-Monte Carlo integration for twice differentiable functions over a triangle
    Goda, Takashi
    Suzuki, Kosuke
    Yoshiki, Takehito
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 454 (01) : 361 - 384
  • [35] AN EXPLICIT CONSTRUCTION OF OPTIMAL ORDER QUASI-MONTE CARLO RULES FOR SMOOTH INTEGRANDS
    Goda, Takashi
    Suzuki, Kosuke
    Yoshiki, Takehito
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2664 - 2683
  • [36] Valuing American Options by Weighted Least-squares Quasi-Monte Carlo
    Yang, Haijun
    Lei, Yang
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 9958 - 9961
  • [37] Improving p-value approximation and level accuracy of Monte Carlo tests by quasi-Monte Carlo methods
    Chiu, Sung Nok
    Liu, Kwong Ip
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (03) : 1272 - 1288
  • [38] ENHANCING QUASI-MONTE CARLO METHODS BY EXPLOITING ADDITIVE APPROXIMATION FOR PROBLEMS IN FINANCE
    Wang, Xiaoqun
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : A283 - A308
  • [39] Error bounds for quasi-Monte Carlo integration for L∞ with uniform point sets
    Hu, Su
    Li, Yan
    MONATSHEFTE FUR MATHEMATIK, 2012, 165 (3-4): : 327 - 334
  • [40] The Mean Square Quasi-Monte Carlo Error for Digitally Shifted Digital Nets
    Goda, Takashi
    Ohori, Ryuichi
    Suzuki, Kosuke
    Yoshiki, Takehito
    MONTE CARLO AND QUASI-MONTE CARLO METHODS, 2016, 163 : 331 - 350