Dyadic diaphony of digital nets over Z2

被引:3
|
作者
Dick, J [1 ]
Pillichshammer, F
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Univ Linz, Inst Finanzmath, A-4040 Linz, Austria
[3] IBM Corp, Tokyo Res Lab, Yamato, Kanagawa 2428502, Japan
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 145卷 / 04期
关键词
dyadic diaphony; digital nets; L-2; discrepancy;
D O I
10.1007/s00605-004-0287-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dyadic diaphony, introduced by Hellekalek and Leeb, is a quantitative measure for the irregularity of distribution of point sets in the unit-cube. In this paper we study the dyadic diaphony of digital nets over Z(2). We prove an upper bound for the dyadic diaphony of nets and show that the convergence order is best possible. This follows from a relation between the dyadic diaphony and the L-2 discrepancy. In order to investigate the case where the number of points is small compared to the dimension we introduce the limiting dyadic diaphony, which is defined as the limiting case where the dimension tends to infinity. We obtain a tight upper and lower bound and we compare this result with the limiting dyadic diaphony of a random sample.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [41] Neutrosophic Quadruple Algebraic Codes over Z2 and their Properties
    Kandasamy V.
    Kandasamy I.
    Smarandache F.
    Neutrosophic Sets and Systems, 2020, 33 : 169 - 182
  • [42] On normalized generating sets for GQC codes over Z2
    Bae, Sunghan
    Kang, Pyung-Lyun
    Li, Chengju
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 285 - 300
  • [43] An action of the free product Z2 * Z2 * Z2 on the q-Onsager algebra and its current algebra
    Terwilliger, Paul
    NUCLEAR PHYSICS B, 2018, 936 : 306 - 319
  • [44] N-Wave Equations with Orthogonal Algebras: Z2 and Z2 x Z2 Reductions and Soliton Solutions
    Gerdjikov, Vladimir S.
    Kostov, Nikolay A.
    Valchev, Tihomir I.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2007, 3
  • [45] AGT/Z2
    Le Floch, Bruno
    Turiaci, Gustavo J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [46] The infection of the Z2°
    Altmann, Klaus
    ELEMENTE DER MATHEMATIK, 2022, 78 (04) : 155 - 167
  • [47] Neutrosophic Quadruple Algebraic Codes over Z2 and their Properties
    Kandasamy, Vasantha
    Kandasamy, Ilanthenral
    Smarandache, Florentin
    Neutrosophic Sets and Systems, 2020, 33 : 169 - 182
  • [48] Neutrosophic Quadruple Algebraic Codes over Z2 and their Properties
    Kandasamy, Vasantha
    Kandasamy, Ilanthenral
    Smarandache, Florentin
    NEUTROSOPHIC SETS AND SYSTEMS, 2020, 33 : 169 - 182
  • [49] (|z1±z2|)~2=(|z1|)~2+(|z2|)~2±2×|z1|×|z2|×cos(θ1-θ2)的应用
    胡晓苹
    中学数学, 1993, (04) : 19 - 22
  • [50] 不等式||z1|-|z2||≤|z1±z2|≤|z1|+|z2|的建立与证明
    陶兴模
    中学数学杂志, 2003, (11) : 19 - 20