Dyadic diaphony of digital nets over Z2

被引:3
|
作者
Dick, J [1 ]
Pillichshammer, F
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Univ Linz, Inst Finanzmath, A-4040 Linz, Austria
[3] IBM Corp, Tokyo Res Lab, Yamato, Kanagawa 2428502, Japan
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 145卷 / 04期
关键词
dyadic diaphony; digital nets; L-2; discrepancy;
D O I
10.1007/s00605-004-0287-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dyadic diaphony, introduced by Hellekalek and Leeb, is a quantitative measure for the irregularity of distribution of point sets in the unit-cube. In this paper we study the dyadic diaphony of digital nets over Z(2). We prove an upper bound for the dyadic diaphony of nets and show that the convergence order is best possible. This follows from a relation between the dyadic diaphony and the L-2 discrepancy. In order to investigate the case where the number of points is small compared to the dimension we introduce the limiting dyadic diaphony, which is defined as the limiting case where the dimension tends to infinity. We obtain a tight upper and lower bound and we compare this result with the limiting dyadic diaphony of a random sample.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 50 条
  • [21] Cyclic codes over the rings Z2 + uZ2 and Z2 + uZ2 + u2Z2
    Taher Abualrub
    Irfan Siap
    Designs, Codes and Cryptography, 2007, 42 : 273 - 287
  • [22] F(Z,1 ,Z2 ) plus A(Z1 ,Z2 )G(Z1 ,Z2 ) equals H(Z1 ,Z2 )..
    Lai, Yhean-Sen
    IEEE transactions on circuits and systems, 1986, CAS-33 (05): : 542 - 544
  • [23] Additive Codes over Z2 x Z4
    Borges, Joaquim
    Fernandez-Cordoba, Cristina
    Dougherty, Steven T.
    2010 IEEE INFORMATION THEORY WORKSHOP (ITW), 2010,
  • [24] SMITH FORMS OVER R[Z1,Z2]
    LEE, EB
    ZAK, SH
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1983, 28 (01) : 115 - 118
  • [25] Quantum phase transition from Z2 x Z2 to Z2 topological order
    Zarei, Mohammad Hossein
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [26] HOMFLYPT homology over Z2 detects unlinks
    Wu, Hao
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2022, 31 (11)
  • [27] Solvability Criteria for Cubic Equations over Z2*
    Saburov, Mansoor
    Ahmad, Mohd Ali Khameini
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 792 - 797
  • [28] Z2[u]Z2[u]-Additive codes
    Shashirekha, G.
    Bhatta, G. R. Vadiraja
    Poojary, Prasanna
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [29] Minimal matrix centralizers over the field Z2
    Dolzan, David
    Bukovsek, Damjana Kokol
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (08): : 1114 - 1126
  • [30] Maximal integral point sets over Z2
    Antonov, Andrey Radoslavov
    Kurz, Sascha
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (12) : 2653 - 2676