A large-scale classification of English verbs

被引:139
|
作者
Kipper, Karin [3 ]
Korhonen, Anna [1 ]
Ryant, Neville [3 ]
Palmer, Martha [2 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Colorado, Dept Linguist, Boulder, CO 80309 USA
[3] Univ Penn, Dept Informat & Comp Sci, Philadelphia, PA 19104 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
lexical classification; lexical resources; computational linguistics;
D O I
10.1007/s10579-007-9048-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lexical classifications have proved useful in supporting various natural language processing (NLP) tasks. The largest verb classification for English is Levin's (1993) work which defines groupings of verbs based on syntactic and semantic properties. VerbNet (VN) (Kipper et al. 2000; Kipper-Schuler 2005)-an extensive computational verb lexicon for English-provides detailed syntactic-semantic descriptions of Levin classes. While the classes included are extensive enough for some NLP use, they are not comprehensive. Korhonen and Briscoe (2004) have proposed a significant extension of Levin's classification which incorporates 57 novel classes for verbs not covered (comprehensively) by Levin. Korhonen and Ryant (unpublished) have recently proposed another extension including 53 additional classes. This article describes the integration of these two extensions into VN. The result is a comprehensive Levin-style classification for English verbs providing over 90% token coverage of the Proposition Bank data (Palmer et al. 2005) and thus can be highly useful for practical applications.
引用
收藏
页码:21 / 40
页数:20
相关论文
共 50 条
  • [41] Large-scale machine learning for metagenomics sequence classification
    Vervier, Kevin
    Mahe, Pierre
    Tournoud, Maud
    Veyrieras, Jean-Baptiste
    Vert, Jean-Philippe
    BIOINFORMATICS, 2016, 32 (07) : 1023 - 1032
  • [42] Large-scale IoT malware analysis and classification method
    He Q.
    Wang L.
    Luo B.
    Yang L.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (02): : 240 - 248
  • [43] Image Models for large-scale Object Detection and Classification
    Kralev, Jordan
    Koeva, Svetla
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE COMPUTATIONAL LINGUISTICS IN BULGARIA, CLIB 2022, 2022, : 190 - 201
  • [44] Embedding Feature Selection for Large-scale Hierarchical Classification
    Naik, Azad
    Rangwala, Huzefa
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 1212 - 1221
  • [45] A Classification Framework for Large-Scale Face Recognition Systems
    Zhou, Ziheng
    Chindaro, Samuel
    Deravi, Farzin
    ADVANCES IN BIOMETRICS, 2009, 5558 : 337 - 346
  • [46] Scalable Iterative Classification for Sanitizing Large-Scale Datasets
    Li, Bo
    Vorobeychik, Yevgeniy
    Li, Muqun
    Malin, Bradley
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (03) : 698 - 711
  • [47] Exploring and exploiting hierarchical structures for large-scale classification
    Zheng, Junyan
    Wang, Yu
    Pei, Shenglei
    Hu, Qinghua
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (06) : 2427 - 2437
  • [48] Good Practice in Large-Scale Learning for Image Classification
    Akata, Zeynep
    Perronnin, Florent
    Harchaoui, Zaid
    Schmid, Cordelia
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (03) : 507 - 520
  • [49] Efficient Large-Scale Multi-Modal Classification
    Kiela, Douwe
    Grave, Edouard
    Joulin, Armand
    Mikolov, Tomas
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5198 - 5204
  • [50] Learning Fused Representations for Large-Scale Multimodal Classification
    Nawaz, Shah
    Calefati, Alessandro
    Janjua, Muhammad Kamran
    Anwaar, Muhammad Umer
    Gallo, Ignazio
    IEEE SENSORS LETTERS, 2019, 3 (01)