A large-scale classification of English verbs

被引:139
|
作者
Kipper, Karin [3 ]
Korhonen, Anna [1 ]
Ryant, Neville [3 ]
Palmer, Martha [2 ]
机构
[1] Univ Cambridge, Comp Lab, Cambridge CB3 0FD, England
[2] Univ Colorado, Dept Linguist, Boulder, CO 80309 USA
[3] Univ Penn, Dept Informat & Comp Sci, Philadelphia, PA 19104 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
lexical classification; lexical resources; computational linguistics;
D O I
10.1007/s10579-007-9048-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Lexical classifications have proved useful in supporting various natural language processing (NLP) tasks. The largest verb classification for English is Levin's (1993) work which defines groupings of verbs based on syntactic and semantic properties. VerbNet (VN) (Kipper et al. 2000; Kipper-Schuler 2005)-an extensive computational verb lexicon for English-provides detailed syntactic-semantic descriptions of Levin classes. While the classes included are extensive enough for some NLP use, they are not comprehensive. Korhonen and Briscoe (2004) have proposed a significant extension of Levin's classification which incorporates 57 novel classes for verbs not covered (comprehensively) by Levin. Korhonen and Ryant (unpublished) have recently proposed another extension including 53 additional classes. This article describes the integration of these two extensions into VN. The result is a comprehensive Levin-style classification for English verbs providing over 90% token coverage of the Proposition Bank data (Palmer et al. 2005) and thus can be highly useful for practical applications.
引用
收藏
页码:21 / 40
页数:20
相关论文
共 50 条
  • [21] Learning Taxonomy Adaptation in Large-scale Classification
    Babbar, Rohit
    Partalas, Ioannis
    Gaussier, Eric
    Amini, Massih-Reza
    Amblard, Cecile
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [22] A large-scale hyperspectral dataset for flower classification
    Zheng, Yongrong
    Zhang, Tao
    Fu, Ying
    KNOWLEDGE-BASED SYSTEMS, 2022, 236
  • [23] Iterative Classification for Sanitizing Large-Scale Datasets
    Li, Bo
    Vorobeychik, Yevgeniy
    Li, Muqun
    Malin, Bradley
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 841 - 846
  • [24] From Small-scale to Large-scale Text Classification
    Kim, Kang-Min
    Kim, Yeachan
    Lee, Jungho
    Lee, Ji-Min
    Lee, SangKeun
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 853 - 862
  • [25] Itihasa: A large-scale corpus for Sanskrit to English translation
    Aralikatte, Rahul
    de Lhoneux, Miryam
    Kunchukuttan, Anoop
    Sogaard, Anders
    WAT 2021: THE 8TH WORKSHOP ON ASIAN TRANSLATION, 2021, : 191 - 197
  • [26] Large-Scale Assessment and English Language Learners With Disabilities
    Liu, Kristin K.
    Ward, Jenna M.
    Thurlow, Martha L.
    Christensen, Laurene L.
    EDUCATIONAL POLICY, 2017, 31 (05) : 551 - 583
  • [27] Fast SVM classifier for large-scale classification problems
    Wang, Huajun
    Li, Genghui
    Wang, Zhenkun
    INFORMATION SCIENCES, 2023, 642
  • [28] Evolutionary compact embedding for large-scale image classification
    Liu, Li
    Shao, Ling
    Li, Xuelong
    INFORMATION SCIENCES, 2015, 316 : 567 - 581
  • [29] LARGE-SCALE MAPPING OF SOILS FOR AGROECOLOGICAL LAND CLASSIFICATION
    SOROKINA, NP
    EURASIAN SOIL SCIENCE, 1994, 26 (06) : 60 - 75
  • [30] Adaptive Classifier Selection in Large-Scale Hierarchical Classification
    Partalas, Ioannis
    Babbar, Rohit
    Gaussier, Eric
    Amblard, Cecile
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 612 - 619