Notes on D-optimal designs

被引:14
|
作者
Neubauer, MG [1 ]
Watkins, W [1 ]
Zeitlin, J [1 ]
机构
[1] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
关键词
D-optimal design; weighing design; simplex;
D O I
10.1016/S0024-3795(98)10015-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to exhibit new infinite families of D-optimal (0, 1)-matrices. We show that Hadamard designs lead to D-optimal matrices of size (j, mj) and (j - 1, mj), for certain integers j = 3 (mod 4) and all positive integers in. For j a power of a prime and j = 1 (mod 4), supplementary difference sets lead to D-optimal matrices of size (j, 2mj) and (j - 1,2mj), for all positive integers m. We also show that for a given j and d sufficiently large, about half of the entries in each column of a D-optimal matrix are ones. This leads to a new relationship between D-optimality for (0, 1)-matrices and for (+/-1)-matrices. Known results about D-optimal (+/-1)-matrices are then used to obtain new D-optimal (0, 1)-matrices. (C) 1998 Elsevier Science Inc. All rights reserved.
引用
下载
收藏
页码:109 / 127
页数:19
相关论文
共 50 条
  • [31] D-optimal weighing designs for six objects
    Michael G. Neubauer
    William Watkins
    Joel Zeitlin
    Metrika, 2000, 52 : 185 - 211
  • [32] D-optimal designs for Poisson regression models
    Wang, Yanping
    Myers, Raymond H.
    Smith, Eric. P.
    Ye, Keying
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (08) : 2831 - 2845
  • [33] ALGORITHM FOR CONSTRUCTION OF D-OPTIMAL EXPERIMENTAL DESIGNS
    MITCHELL, TJ
    TECHNOMETRICS, 1974, 16 (02) : 203 - 210
  • [34] RECURRENCE MOMENT FORMULAS FOR D-OPTIMAL DESIGNS
    DETTE, H
    WONG, WK
    SCANDINAVIAN JOURNAL OF STATISTICS, 1995, 22 (04) : 505 - 512
  • [35] A Compilation of the D-Optimal Designs in Chemical Kinetics
    Kitsos, Christos P.
    Kolovos, Konstantinos G.
    CHEMICAL ENGINEERING COMMUNICATIONS, 2013, 200 (02) : 185 - 204
  • [36] The D-optimal saturated designs of order 22
    Chasiotis, Vasilis
    Kounias, Stratis
    Farmakis, Nikos
    DISCRETE MATHEMATICS, 2018, 341 (02) : 380 - 387
  • [37] D-optimal weighted paired comparison designs
    van Berkum, EEM
    Pauwels, B
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 110 (1-2) : 147 - 157
  • [38] New classes of D-optimal edge designs
    Koukouvinos, C
    Stylianou, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (01) : 248 - 259
  • [39] D-optimal minimax fractional factorial designs
    Lin, Dennis K. J.
    Zhou, Julie
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (02): : 325 - 340
  • [40] D-Optimal designs for quadratic regression models
    van Berkum, EEM
    Pauwels, B
    Upperman, PM
    ADVANCES IN STOCHASTIC SIMULATION METHODS, 2000, : 189 - 195