Deep residual LSTM with domain-invariance for remaining useful life prediction across domains

被引:79
|
作者
Fu, Song [1 ]
Zhang, Yongjian [2 ]
Lin, Lin [1 ]
Zhao, Minghang [2 ]
Zhong, Shi-sheng [1 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
[2] Harbin Inst Technol Weihai, Sch Ocean Engn, Weihai 264209, Shandong, Peoples R China
关键词
Unsupervised domain adaptation; RUL prediction; Residual connection; LSTM; Domain confusion; FAULT-DIAGNOSIS; NETWORK;
D O I
10.1016/j.ress.2021.108012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
performance of cross-domain RUL prediction, but only optimizing one single metric (MMD or adversarial mechanism) to reduce the domain discrepancy has limited further improvement. Moreover, learning a set of good features has been a long-standing issue in RUL prediction. To address these issues, an effective UDA method namely deep residual LSTM with Domain-invariance (DIDRLSTM) is investigated to improve the prognostic performance. First, the DRLSTM is designed as the feature extractor to learn high-level features from both source and target domains. The introduction of residual connections allows DRLSTM to add more nonlinear layers to learn the more representative degradation features. Second, two modules are integrated to further reduce the domain discrepancy. One is domain adaptation, which reduces the domain discrepancy by adding MK-MMD constraints to map the features to RHKS. The other is domain confusion, which reduces the domain discrepancy through minimizing the domain discriminative ability of the domain classifier trained under adversarial optimization strategy. Finally, the outstanding performance of DIDRLSTM is validated on C-MAPSS dataset and FEMTO-ST dataset. The experimental results show that the DIDRLSTM outperforms five state-of-the-art UDA methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Gravitational Search Algorithm Based LSTM Deep Neural Network for Battery Capacity and Remaining Useful Life Prediction With Uncertainty
    Reza, M. S.
    Hannan, M. A.
    Mansor, Muhammad Bin
    Ker, Pin Jern
    Tiong, Sieh Kiong
    Hossain, M. J.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2024, 60 (06) : 9171 - 9183
  • [32] Weighted Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Wu, Kangkai
    Li, Jingjing
    Zuo, Lin
    Lu, Ke
    Shen, Heng Tao
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [33] Contrastive Adversarial Domain Adaptation for Machine Remaining Useful Life Prediction
    Ragab, Mohamed
    Chen, Zhenghua
    Wu, Min
    Foo, Chuan Sheng
    Kwoh, Chee Keong
    Yan, Ruqiang
    Li, Xiaoli
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5239 - 5249
  • [34] Remaining Useful Life Estimation in Prognostics Using Deep Bidirectional LSTM Neural Network
    Wang, Jiujian
    Wen, Guilin
    Yang, Shaopu
    Liu, Yongqiang
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 1037 - 1042
  • [35] Remaining useful life prediction across operating conditions based on deep subdomain adaptation network considering the weighted multi-source domain
    Wu, Chenchen
    He, Jialong
    Shen, Wanghao
    Xu, Weiyang
    Lv, Jun
    Liu, Shaoyang
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [36] Prediction of Remaining Useful Life of Lithium Batteries Based on WOA-VMD and LSTM
    Ouyang, Mingsan
    Shen, Peicheng
    ENERGIES, 2022, 15 (23)
  • [37] An Improved PF Remaining Useful Life Prediction Method Based on Quantum Genetics and LSTM
    Ge, Yang
    Sun, Lining
    Ma, Jiaxin
    IEEE ACCESS, 2019, 7 : 160241 - 160247
  • [38] Constrained time-dependent loss LSTM for bearing remaining useful life prediction
    Sun, Han
    Yu, Jiachuan
    Xia, Zhijie
    Zhang, Zhisheng
    Wen, Haiying
    2023 29TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE, M2VIP 2023, 2023,
  • [39] Remaining Useful Life Prediction for Rolling Bearings Using EMD-RISI-LSTM
    Guo, Runxia
    Wang, Yu
    Zhang, Haochi
    Zhang, Guoliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71 : 17 - 17
  • [40] REMAINING USEFUL LIFE PREDICTION OF WIND TURBINE BLADES BASED ON OPTIMIZED LSTM MODEL
    Jiao J.
    Bi J.
    Ge X.
    Wang G.
    Ma H.
    Zhou D.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (06): : 495 - 502