A priori estimates to solutions of the time-fractional convection-diffusion-reaction equation coupled with the Darcy system

被引:7
|
作者
Hendy, Ahmed S. [1 ]
Zaky, Mahmoud A. [2 ,3 ]
机构
[1] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
[2] Natl Res Ctr, Dept Appl Math, Cairo 12622, Egypt
[3] Nazarbayev Univ, Dept Math, Nur Sultan, Kazakhstan
关键词
Time fractional convection-diffusion; Darcy's law; A priori estimates; Existence and uniqueness; POROUS-MEDIA;
D O I
10.1016/j.cnsns.2022.106288
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Darcy flow equation coupled with the Caputo time-fractional convection-reaction-diffusion equations. This system describes the concentration distribution of a fluid running through a porous medium. A priori estimates are established for the solution by employing the method of energy inequalities. The existence, uniqueness and regularity properties of a weak solution are studied. Our analysis relies on two novel and different methodologies in combination with two alternative variational formulations. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516
  • [32] On the character of operational solutions of the time-fractional diffusion equation
    Takaci, Djurdjica
    Takaci, Arpad
    Strboja, Mirjana
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2367 - 2374
  • [33] Convection-diffusion-reaction problems, SDFEM/SUPG and a priori meshes
    Stynes, Martin
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2007, 1 (2-4) : 412 - 431
  • [34] Discretization of the stationary convection-diffusion-reaction equation
    van't Hof, B
    Boonkkamp, JHMT
    Mattheij, RMM
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1998, 14 (05) : 607 - 625
  • [35] Finite element methods for the Darcy-Forchheimer problem coupled with the convection-diffusion-reaction problem
    Sayah, Toni
    Semaan, Georges
    Triki, Faouzi
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (06) : 2643 - 2678
  • [36] On the solutions of time-fractional reaction-diffusion equations
    Rida, S. Z.
    El-Sayed, A. M. A.
    Arafa, A. A. M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (12) : 3847 - 3854
  • [37] On the equivalence of viscosity solutions and distributional solutions for the time-fractional diffusion equation
    Giga, Yoshikazu
    Mitake, Hiroyoshi
    Sato, Shoichi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 316 : 364 - 386
  • [38] A priori and a posteriori error estimates of a space-time Petrov-Galerkin spectral method for time-fractional diffusion equation
    Tang, Bo
    Mao, Wenting
    Zeng, Zhankuan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 219 : 559 - 572
  • [39] A compact integrated RBF method for time fractional convection-diffusion-reaction equations
    Qiao, Yuanyang
    Zhao, Jianping
    Feng, Xinlong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (09) : 2263 - 2278
  • [40] Identification of time-dependent convection coefficient in a time-fractional diffusion equation
    Sun, Liangliang
    Yan, Xiongbin
    Wei, Ting
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 346 : 505 - 517