On the equivalence of viscosity solutions and distributional solutions for the time-fractional diffusion equation

被引:9
|
作者
Giga, Yoshikazu [1 ]
Mitake, Hiroyoshi [1 ]
Sato, Shoichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Caputo time fractional derivatives; Initial-boundary value problems; Fractional diffusion equation; Viscosity solutions; Distributional solutions; HAMILTON-JACOBI EQUATIONS; WEAK SOLUTIONS;
D O I
10.1016/j.jde.2022.01.057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an initial-boundary value problem for the time-fractional diffusion equation. We prove the equivalence of two notions of weak solutions, viscosity solutions and distributional solutions. (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:364 / 386
页数:23
相关论文
共 50 条
  • [1] On the Solutions of the Time-Fractional Diffusion Equation
    Takaci, Arpad
    Takaci, Djurdjica
    Strboja, Ana
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2008, 1048 : 538 - 540
  • [2] REGULARITY OF SOLUTIONS TO A TIME-FRACTIONAL DIFFUSION EQUATION
    McLean, William
    ANZIAM JOURNAL, 2010, 52 (02): : 123 - 138
  • [3] RATIONAL SOLUTIONS FOR THE TIME-FRACTIONAL DIFFUSION EQUATION
    Atkinson, Colin
    Osseiran, Adel
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (01) : 92 - 106
  • [4] The Wright functions as solutions of the time-fractional diffusion equation
    Mainardi, F
    Pagnini, G
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 141 (01) : 51 - 62
  • [5] Similarity Solutions for Multiterm Time-Fractional Diffusion Equation
    Elsaid, A.
    Latif, M. S. Abdel
    Maneea, Andm.
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [6] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516
  • [7] On the character of operational solutions of the time-fractional diffusion equation
    Takaci, Djurdjica
    Takaci, Arpad
    Strboja, Mirjana
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) : 2367 - 2374
  • [8] Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
    Y.Z. Povstenko
    Advances in Difference Equations, 2011
  • [9] Solutions to Time-Fractional Diffusion-Wave Equation in Cylindrical Coordinates
    Povstenko, Y. Z.
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [10] Equivalence between distributional and viscosity solutions for the double-phase equation
    Fang, Yuzhou
    Zhang, Chao
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (04) : 811 - 829