On the equivalence of viscosity solutions and distributional solutions for the time-fractional diffusion equation

被引:9
|
作者
Giga, Yoshikazu [1 ]
Mitake, Hiroyoshi [1 ]
Sato, Shoichi [1 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
关键词
Caputo time fractional derivatives; Initial-boundary value problems; Fractional diffusion equation; Viscosity solutions; Distributional solutions; HAMILTON-JACOBI EQUATIONS; WEAK SOLUTIONS;
D O I
10.1016/j.jde.2022.01.057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an initial-boundary value problem for the time-fractional diffusion equation. We prove the equivalence of two notions of weak solutions, viscosity solutions and distributional solutions. (c) 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:364 / 386
页数:23
相关论文
共 50 条
  • [41] Time-fractional diffusion equation in the fractional Sobolev spaces
    Rudolf Gorenflo
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2015, 18 : 799 - 820
  • [42] On the solutions of (2+1)-dimensional time-fractional Schrodinger equation
    Li, Chao
    Guo, Qilong
    Zhao, Meimei
    APPLIED MATHEMATICS LETTERS, 2019, 94 : 238 - 243
  • [43] Approximate solutions for boundary value problems of time-fractional wave equation
    Odibat, Zaid M.
    Momani, Shaher
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 181 (01) : 767 - 774
  • [44] Traveling wave solutions for time-fractional K(m, n) equation
    Zaidan, Lahib Ibrahim
    Darvishi, M. T.
    OPTIK, 2017, 142 : 564 - 575
  • [45] TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES
    Gorenflo, Rudolf
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 799 - 820
  • [46] Time-fractional inhomogeneous nonlinear diffusion equation: Symmetries, conservation laws, invariant subspaces, and exact solutions
    Feng, Wei
    Zhao, Songlin
    MODERN PHYSICS LETTERS B, 2018, 32 (32):
  • [47] ANALYTICAL SOLUTIONS FOR TIME-FRACTIONAL RADHAKRISHNAN-KUNDU-LAKSHMANAN EQUATION
    Zhang, Jiqiang
    Kadkhoda, Nematollah
    Baymani, Mojtaba
    Jafari, Hossein
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [48] Blow-up of smooth solutions of the time-fractional Burgers equation
    Alsaedi, Ahmed
    Kirane, Mokhtar
    Torebek, Berikbol T.
    QUAESTIONES MATHEMATICAE, 2020, 43 (02) : 185 - 192
  • [49] The method of approximate particular solutions for the time-fractional diffusion equation with a non-local boundary condition
    Yan, Liang
    Yang, Fenglian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (03) : 254 - 264
  • [50] Time-fractional diffusion equation with time dependent diffusion coefficient
    Fa, KS
    Lenzi, EK
    PHYSICAL REVIEW E, 2005, 72 (01):